1
|
Bashiri G. F 420-dependent transformations in biosynthesis of secondary metabolites. Curr Opin Chem Biol 2024; 80:102468. [PMID: 38776765 DOI: 10.1016/j.cbpa.2024.102468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/01/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Cofactor F420 has been historically known as the "methanogenic redox cofactor". It is now recognised that F420 has essential roles in the primary and secondary metabolism of archaea and bacteria. Recent discoveries highlight the role of F420 as a redox cofactor in the biosynthesis of various natural products, including ribosomally synthesised and post-translationally modified peptides, and a new class of nicotinamide adenine dinucleotide-based secondary metabolites. With the vast availability of (meta)genomic data, the identification of uncharacterised F420-dependent enzymes offers the potential for discovering novel secondary metabolites, presenting valuable prospects for clinical and biotechnological applications.
Collapse
Affiliation(s)
- Ghader Bashiri
- Laboratory of Microbial Biochemistry and Biotechnology, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand.
| |
Collapse
|
2
|
Stefan A, Mucchi A, Hochkoeppler A. The catalytic action of human d-lactate dehydrogenase is severely inhibited by oxalate and is impaired by mutations triggering d-lactate acidosis. Arch Biochem Biophys 2024; 754:109932. [PMID: 38373542 DOI: 10.1016/j.abb.2024.109932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
d-lactate dehydrogenases are known to be expressed by prokaryotes and by eukaryotic invertebrates, and over the years the functional and structural features of some bacterial representatives of this enzyme ensemble have been investigated quite in detail. Remarkably, a human gene coding for a putative d-lactate dehydrogenase (DLDH) was identified and characterized, disclosing the occurrence of alternative splicing of its primary transcript. This translates into the expression of two human DLDH (hDLDH) isoforms, the molecular mass of which is expected to differ by 2.7 kDa. However, no information on these two hDLDH isoforms is available at the protein level. Here we report on the catalytic action of these enzymes, along with a first analysis of their structural features. In particular, we show that hDLDH is strictly stereospecific, with the larger isoform (hDLDH-1) featuring higher activity at the expense of d-lactate when compared to its smaller counterpart (hDLDH-2). Furthermore, we found that hDLDH is strongly inhibited by oxalate, as indicated by a Ki equal to 1.2 μM for this dicarboxylic acid. Structurally speaking, hDLDH-1 and hDLDH-2 were determined, by means of gel filtration and dynamic light scattering experiments, to be a hexamer and a tetramer, respectively. Moreover, in agreement with previous studies performed with human mitochondria, we identified FAD as the cofactor of hDLDH, and we report here a model of FAD binding by the human d-lactate dehydrogenase. Interestingly, the mutations W323C and T412 M negatively affect the activity of hDLDH, most likely by impairing the enzyme electron-acceptor site.
Collapse
Affiliation(s)
- Alessandra Stefan
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy; CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy
| | - Alberto Mucchi
- Department of Industrial Chemistry "Toso Montanari", Viale Risorgimento 4, 40136, Bologna, Italy
| | - Alejandro Hochkoeppler
- Department of Pharmacy and Biotechnology, University of Bologna, Viale Risorgimento 4, 40136, Bologna, Italy; CSGI, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
3
|
Lee M, Fraaije MW. Equipping Saccharomyces cerevisiae with an Additional Redox Cofactor Allows F 420-Dependent Bioconversions in Yeast. ACS Synth Biol 2024; 13:921-929. [PMID: 38346396 PMCID: PMC10949242 DOI: 10.1021/acssynbio.3c00718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 03/16/2024]
Abstract
Industrial application of the natural deazaflavin cofactor F420 has high potential for the enzymatic synthesis of high value compounds. It can offer an additional range of chemistry to the use of well-explored redox cofactors such as FAD and their respective enzymes. Its limited access through organisms that are rather difficult to grow has urged research on the heterologous production of F420 using more industrially relevant microorganisms such as Escherichia coli. In this study, we demonstrate the possibility of producing this cofactor in a robust and widely used industrial organism, Saccharomyces cerevisiae, by the heterologous expression of the F420 pathway. Through careful selection of involved enzymes and some optimization, we achieved an F420 yield of ∼1.3 μmol/L, which is comparable to the yield of natural F420 producers. Furthermore, we showed the potential use of F420-producing S. cerevisiae for F420-dependent bioconversions by carrying out the whole-cell conversion of tetracycline. As the first demonstration of F420 synthesis and use for bioconversion in a eukaryotic organism, this study contributes to the development of versatile bioconversion platforms.
Collapse
Affiliation(s)
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
4
|
Kang SW, Antoney J, Frkic RL, Lupton DW, Speight R, Scott C, Jackson CJ. Asymmetric Ene-Reduction of α,β-Unsaturated Compounds by F 420-Dependent Oxidoreductases A Enzymes from Mycobacterium smegmatis. Biochemistry 2023; 62:873-891. [PMID: 36637210 DOI: 10.1021/acs.biochem.2c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The stereoselective reduction of alkenes conjugated to electron-withdrawing groups by ene-reductases has been extensively applied to the commercial preparation of fine chemicals. Although several different enzyme families are known to possess ene-reductase activity, the old yellow enzyme (OYE) family has been the most thoroughly investigated. Recently, it was shown that a subset of ene-reductases belonging to the flavin/deazaflavin oxidoreductase (FDOR) superfamily exhibit enantioselectivity that is generally complementary to that seen in the OYE family. These enzymes belong to one of several FDOR subgroups that use the unusual deazaflavin cofactor F420. Here, we explore several enzymes of the FDOR-A subgroup, characterizing their substrate range and enantioselectivity with 20 different compounds, identifying enzymes (MSMEG_2027 and MSMEG_2850) that could reduce a wide range of compounds stereoselectively. For example, MSMEG_2027 catalyzed the complete conversion of both isomers of citral to (R)-citronellal with 99% ee, while MSMEG_2850 catalyzed complete conversion of ketoisophorone to (S)-levodione with 99% ee. Protein crystallography combined with computational docking has allowed the observed stereoselectivity to be mechanistically rationalized for two enzymes. These findings add further support for the FDOR and OYE families of ene-reductases displaying general stereocomplementarity to each other and highlight their potential value in asymmetric ene-reduction.
Collapse
Affiliation(s)
- Suk Woo Kang
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung25451, Republic of Korea
| | - James Antoney
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, Queensland4000, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, Queensland4000, Australia
| | - Rebecca L Frkic
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| | - David W Lupton
- School of Chemistry, Monash University, Melbourne, Victoria3800, Australia
| | - Robert Speight
- School of Biology and Environmental Sciences, Queensland University of Technology, Brisbane, Queensland4000, Australia.,ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, Queensland4000, Australia
| | - Colin Scott
- Land and Water, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria3168, Australia.,CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Canberra, Australian Capital Territory2601, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,ARC Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia.,ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, Australian Capital Territory2601, Australia
| |
Collapse
|
5
|
Cofactor and Process Engineering for Nicotinamide Recycling and Retention in Intensified Biocatalysis. Catalysts 2022. [DOI: 10.3390/catal12111454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
There is currently considerable interest in the intensification of biocatalytic processes to reduce the cost of goods for biocatalytically produced chemicals, including pharmaceuticals and advanced pharmaceutical intermediates. Continuous-flow biocatalysis shows considerable promise as a method for process intensification; however, the reliance of some reactions on the use of diffusible cofactors (such as the nicotinamide cofactors) has proven to be a technical barrier for key enzyme classes. This minireview covers attempts to overcome this limitation, including the cofactor recapture and recycling retention of chemically modified cofactors. For the latter, we also consider the state of science for cofactor modification, a field reinvigorated by the current interest in continuous-flow biocatalysis.
Collapse
|
6
|
Zhang ZX, Wang YZ, Nong FT, Xu Y, Ye C, Gu Y, Sun XM, Huang H. Developing a dynamic equilibrium system in Escherichia coli to improve the production of recombinant proteins. Appl Microbiol Biotechnol 2022; 106:6125-6137. [PMID: 36056198 DOI: 10.1007/s00253-022-12145-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 11/02/2022]
Abstract
The combination of Escherichia coli BL21 (DE3) and the pET expression system is used extensively for the expression of various recombinant proteins (RPs). However, RP overexpression often introduces a growth burden for the host, especially in the case of toxic proteins. The key to solving this problem is to reduce the host burden associated with protein overproduction, which is often achieved by regulating the expression or activity of T7 RNAP or growth-decoupled systems. However, these strategies mainly relieve or interrupt the robbing of host resources, and do not eliminate other types of host burdens in the production process. In this study, we constructed a production system based on a dynamic equilibrium to precisely relieve the host burden and increase the RP production. The system is composed of three modules, including the overexpression of basic growth-related genes (rRNA, RNAP core enzyme, sigma factors), prediction and overexpression of key proteins using the enzyme-constrained model ec_iECBD_1354, and dynamic regulation of growth-related and key protein expression intensity based on a burden-driven promoter. Using this system, the production of many high-burden proteins, including autolysis protein and E. coli membrane proteins, was increased to varying degrees. Among them, the cytosine transporter protein (CodB) was most significantly improved, with a 4.02-fold higher production compared to the wild strain. This system can effectively reduce the optimizing costs, and is suitable for developing various types of RP expression hosts rapidly. KEY POINTS: • The basic growth-related resources can relieve the host burden from recombinant protein. • The enzyme-constrained model can accurately predict key genes to improve yield. • The expression intensity can be dynamically adjusted with changes in burden.
Collapse
Affiliation(s)
- Zi-Xu Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Fang-Tong Nong
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yan Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yang Gu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China.
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Last D, Hasan M, Rothenburger L, Braga D, Lackner G. High-yield production of coenzyme F 420 in Escherichia coli by fluorescence-based screening of multi-dimensional gene expression space. Metab Eng 2022; 73:158-167. [PMID: 35863619 DOI: 10.1016/j.ymben.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/04/2022] [Accepted: 07/14/2022] [Indexed: 10/17/2022]
Abstract
Coenzyme F420 is involved in bioprocesses such as biosynthesis of antibiotics by streptomycetes, prodrug activation in Mycobacterium tuberculosis, and methanogenesis in archaea. F420-dependent enzymes also attract interest as biocatalysts in organic chemistry. However, as only low F420 levels are produced in microorganisms, F420 availability is a serious bottleneck for research and application. Recent advances in our understanding of the F420 biosynthesis enabled heterologous overproduction of F420 in Escherichia coli, but the yields remained moderate. To address this issue, we rationally designed a synthetic operon for F420 biosynthesis in E. coli. However, it still led to the production of low amounts of F420 and undesired side-products. In order to strongly improve yield and purity, a screening approach was chosen to interrogate the gene expression-space of a combinatorial library based on diversified promotors and ribosome binding sites. The whole pathway was encoded by a two-operon construct. The first module ("core") addressed parts of the riboflavin biosynthesis pathway and FO synthase for the conversion of GTP to the stable F420 intermediate FO. The enzymes of the second module ("decoration") were chosen to turn FO into F420. The final construct included variations of T7 promoter strengths and ribosome binding site activity to vary the expression ratio for the eight genes involved in the pathway. Fluorescence-activated cell sorting was used to isolate clones of this library displaying strong F420-derived fluorescence. This approach yielded the highest titer of coenzyme F420 produced in the widely used organism E. coli so far. Production in standard LB medium offers a highly effective and simple production process that will facilitate basic research into unexplored F420-dependent bioprocesses as well as applications of F420-dependent enzymes in biocatalysis.
Collapse
Affiliation(s)
- Daniel Last
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Mahmudul Hasan
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Linda Rothenburger
- Core Facility Flow Cytometry, Leibniz Institute on Aging - Fritz Lipmann Institute, Beutenbergstr. 11, 07745, Jena, Germany
| | - Daniel Braga
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany
| | - Gerald Lackner
- Junior Research Group Synthetic Microbiology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstr. 11a, 07745, Jena, Germany.
| |
Collapse
|
8
|
Cofactor F420, an emerging redox power in biosynthesis of secondary metabolites. Biochem Soc Trans 2022; 50:253-267. [PMID: 35191491 DOI: 10.1042/bst20211286] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023]
Abstract
Cofactor F420 is a low-potential hydride-transfer deazaflavin that mediates important oxidoreductive reactions in the primary metabolism of archaea and a wide range of bacteria. Over the past decade, biochemical studies have demonstrated another essential role for F420 in the biosynthesis of various classes of natural products. These studies have substantiated reports predating the structural determination of F420 that suggested a potential role for F420 in the biosynthesis of several antibiotics produced by Streptomyces. In this article, we focus on this exciting and emerging role of F420 in catalyzing the oxidoreductive transformation of various imine, ketone and enoate moieties in secondary metabolites. Given the extensive and increasing availability of genomic and metagenomic data, these F420-dependent transformations may lead to the discovery of novel secondary metabolites, providing an invaluable and untapped resource in various biotechnological applications.
Collapse
|
9
|
Lee M, Drenth J, Trajkovic M, de Jong RM, Fraaije MW. Introducing an Artificial Deazaflavin Cofactor in Escherichia coli and Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:938-952. [PMID: 35044755 PMCID: PMC8859854 DOI: 10.1021/acssynbio.1c00552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Deazaflavin-dependent
whole-cell conversions in well-studied and
industrially relevant microorganisms such as Escherichia coli and Saccharomyces cerevisiae have high potential
for the biocatalytic production of valuable compounds. The artificial
deazaflavin FOP (FO-5′-phosphate) can functionally substitute
the natural deazaflavin F420 and can be synthesized in
fewer steps, offering a solution to the limited availability of the
latter due to its complex (bio)synthesis. Herein we set out to produce
FOP in vivo as a scalable FOP production method and as a means for
FOP-mediated whole-cell conversions. Heterologous expression of the
riboflavin kinase from Schizosaccharomyces pombe enabled
in vivo phosphorylation of FO, which was supplied by either organic
synthesis ex vivo, or by a coexpressed FO synthase in vivo, producing
FOP in E. coli as well as in S. cerevisiae. Through combined approaches of enzyme engineering as well as optimization
of expression systems and growth media, we further improved the in
vivo FOP production in both organisms. The improved FOP production
yield in E. coli is comparable to the F420 yield of native F420-producing organisms such
as Mycobacterium smegmatis, but the former can be
achieved in a significantly shorter time frame. Our E. coli expression system has an estimated production rate of 0.078 μmol
L–1 h–1 and results in an intracellular
FOP concentration of about 40 μM, which is high enough to support
catalysis. In fact, we demonstrate the successful FOP-mediated whole-cell
conversion of ketoisophorone using E. coli cells.
In S. cerevisiae, in vivo FOP production by SpRFK using supplied FO was improved through media optimization
and enzyme engineering. Through structure-guided enzyme engineering,
a SpRFK variant with 7-fold increased catalytic efficiency
compared to the wild type was discovered. By using this variant in
optimized media conditions, FOP production yield in S. cerevisiae was 20-fold increased compared to the very low initial yield of
0.24 ± 0.04 nmol per g dry biomass. The results show that bacterial
and eukaryotic hosts can be engineered to produce the functional deazaflavin
cofactor mimic FOP.
Collapse
Affiliation(s)
- Misun Lee
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Jeroen Drenth
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Milos Trajkovic
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - René M. de Jong
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Marco W. Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|