1
|
Zhang X, Wu M, Cheng L, Cao W, Liu Z, Yang SB, Kim MS. Fast-spiking parvalbumin-positive interneurons: new perspectives of treatment and future challenges in dementia. Mol Psychiatry 2025; 30:693-704. [PMID: 39695324 DOI: 10.1038/s41380-024-02756-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/26/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024]
Abstract
Central nervous system parvalbumin-positive interneurons (PV-INs) are crucial and highly vulnerable to various stressors. They also play a significant role in the pathological processes of many neuropsychiatric diseases, especially those associated with cognitive impairment, such as Alzheimer's disease (AD), vascular dementia (VD), Lewy body dementia, and schizophrenia. Although accumulating evidence suggests that the loss of PV-INs is associated with memory impairment in dementia, the precise molecular mechanisms remain elusive. In this review, we delve into the current evidence regarding the physiological properties of PV-INs and summarize the latest insights into how their loss contributes to cognitive decline in dementia, particularly focusing on AD and VD. Additionally, we discuss the influence of PV-INs on brain development, the variations in their characteristics across different types of dementia, and how their loss affects the etiology and progression of cognitive impairments. Ultimately, our goal is to provide a comprehensive overview of PV-INs and to consider their potential as novel therapeutic targets in dementia treatment.
Collapse
Affiliation(s)
- Xiaorong Zhang
- Department of Pathology, Affiliated Hospital of Jiujiang University, Jiujiang, China
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
- Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Moxin Wu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Lin Cheng
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Wa Cao
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Ziying Liu
- Jiujiang Clinical Precision Clinical Medicine Research Center, Jiujiang, Jiangxi, China
| | - Seung-Bum Yang
- Department of Paramedicine, Wonkwang Health Science University, Iksan, Republic of Korea
| | - Min-Sun Kim
- Center for Nitric Oxide Metabolite, Wonkwang University, Iksan, Republic of Korea.
| |
Collapse
|
2
|
Matthews EA, Russ JB, Qian Y, Zhao S, Thompson P, Methani M, Vestal ML, Josh Huang Z, Southwell DG. RNA-programmable cell type monitoring and manipulation in the human cortex with CellREADR. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626590. [PMID: 39677799 PMCID: PMC11642864 DOI: 10.1101/2024.12.03.626590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Reliable and systematic experimental access to diverse cell types is necessary for understanding the neural circuit organization, function, and pathophysiology of the human brain. Methods for targeting human neural populations are scarce and currently center around identifying and engineering transcriptional enhancers and viral capsids. Here we demonstrate the utility of CellREADR, a programmable RNA sensor-effector technology that couples cellular RNA sensing to effector protein translation, for accessing, monitoring, and manipulating specific neuron types in ex vivo human cortical tissues. We designed CellREADR constructs to target two distinct human neuron types, CALB2+ (calretinin) GABAergic interneurons and FOXP2+ (forkhead box protein P2) glutamatergic projection neurons, and validated cell targeting using histological, electrophysiological, and transcriptomic methods. CellREADR-mediated expression of optogenetic effectors and genetically-encoded calcium indicators allowed us to manipulate and monitor these neuronal populations in cortical microcircuits. We further demonstrate that AAV-based CellREADR and enhancer vectors can be jointly used to target different subpopulations in the same preparation. By demonstrating specific, reliable, and programmable experimental access to targeted cell types, our results highlight CellREADR's potential for studying human neural circuits and treating brain disorders with cell type resolution.
Collapse
Affiliation(s)
- Elizabeth A. Matthews
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC USA
| | - Jeffrey B. Russ
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC USA
- Department of Pediatrics, Division of Neurology, Duke University School of Medicine, Durham, NC USA
| | - Yongjun Qian
- Department of Neurobiology, Duke University School of Medicine, Durham, NC USA
- Current affiliation: College of Future technology, Peking-Tsinghua Center for Life Sciences, IDG/McGovern Institute for Brain Research, Beijing Advanced Center of RNA Biology (BEACON), Peking University, China
| | - Shengli Zhao
- Department of Neurobiology, Duke University School of Medicine, Durham, NC USA
| | - Peyton Thompson
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC USA
| | - Muhib Methani
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC USA
| | - Matthew L. Vestal
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC USA
- Current affiliation: Department of Neurosurgery, Dartmouth University, Dartmouth, MA USA
| | - Z. Josh Huang
- Department of Neurobiology, Duke University School of Medicine, Durham, NC USA
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC USA
| | - Derek G. Southwell
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC USA
- Department of Neurobiology, Duke University School of Medicine, Durham, NC USA
- Department of Biomedical Engineering, Duke University Pratt School of Engineering, Durham, NC USA
| |
Collapse
|
3
|
Casillas-Espinosa PM, Wong JC, Grabon W, Gonzalez-Ramos A, Mantegazza M, Yilmaz NC, Patel M, Staley K, Sankar R, O'Brien TJ, Akman Ö, Balagura G, Numis AL, Noebels JL, Baulac S, Auvin S, Henshall DC, Galanopoulou AS. WONOEP appraisal: Targeted therapy development for early onset epilepsies. Epilepsia 2024. [PMID: 39560633 DOI: 10.1111/epi.18187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/20/2024]
Abstract
The early onset epilepsies encompass a heterogeneous group of disorders, some of which result in drug-resistant seizures, developmental delay, psychiatric comorbidities, and sudden death. Advancement in the widespread use of targeted gene panels as well as genome and exome sequencing has facilitated the identification of different causative genes in a subset of these patients. The ability to recognize the genetic basis of early onset epilepsies continues to improve, with de novo coding variants accounting for most of the genetic etiologies identified. Although current disease-specific and disease-modifying therapies remain limited, novel precision medicine approaches, such as small molecules, cell therapy, and other forms of genetic therapies for early onset epilepsies, have created excitement among researchers, clinicians, and caregivers. Here, we summarize the main findings of presentations and discussions on novel therapeutic strategies for targeted treatment of early onset epilepsies that occurred during the Workshop on Neurobiology of Epilepsy (WONOEP XVI, Talloires, France, July 2022). The presentations discussed the use of chloride transporter inhibitors for neonatal seizures, targeting orexinergic signaling for childhood absence epilepsy, targeting energy metabolism in Dravet syndrome, and the role of cannabinoid receptor type 2, reversible acetylcholinesterase inhibitors, cell therapies, and RNA-based therapies in early life epilepsies.
Collapse
Affiliation(s)
- Pablo M Casillas-Espinosa
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Jennifer C Wong
- Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | - Wanda Grabon
- Centre de Recherche en Neurosciences de Lyon, U10208 UMR5292, TIGER Team, Université Claude Bernard Lyon 1, The National Center for Scientific Research (CNRS) and The National Institute of Health and Medical Research (INSERM), Bron, France
- Epilepsy Institute IDEE, Bron, France
| | - Ana Gonzalez-Ramos
- Experimental Epilepsy Group, Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, Lund, Sweden
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Massimo Mantegazza
- University Cote d'Azur, Valbonne-Sophia Antipolis, Valbonne, France
- LabEx ICST, Valbonne-Sophia Antipolis, CNRS UMR 7275, Institute of Molecular and Cellular Pharmacology, Valbonne, France
- INSERM, Valbonne-Sophia Antipolis, Valbonne, France
| | - Nihan Carcak Yilmaz
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Kevin Staley
- Neurology Department, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Raman Sankar
- Department of Neurology and Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Terence J O'Brien
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Neurology, Alfred Hospital, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - Özlem Akman
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, Istanbul, Turkey
| | - Ganna Balagura
- Department of Neuroscience, Ophthalmology, and Maternal and Child Health, University of Genoa, Genoa, Italy
| | - Adam L Numis
- Department of Neurology and Department of Pediatrics, University of California, San Francisco, San Francisco, California, USA
| | - Jeffrey L Noebels
- Departments of Neurology, Neuroscience, and Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Stéphanie Baulac
- Sorbonne Université, Institut du Cerveau-Paris Brain Institute-ICM, INSERM, CNRS, Paris, France
| | - Stéphane Auvin
- INSERM NeuroDiderot, Université Paris Cité, Paris, France
- Pediatric Neurology Department, APHP, Robert Debré University Hospital, CRMR Epilepsies Rares, EpiCare member, Paris, France
- Institut Universitaire de France, Paris, France
| | - David C Henshall
- FutureNeuro Research Ireland Centre, RCSI University of Medicine and Health Sciences, Dublin, Ireland
- Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences, Dublin, Ireland
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Isabelle Rapin Division of Child Neurology, Laboratory of Developmental Epilepsy, Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
4
|
Svendsen SP, Svendsen CN. Cell therapy for neurological disorders. Nat Med 2024; 30:2756-2770. [PMID: 39407034 DOI: 10.1038/s41591-024-03281-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/30/2024] [Indexed: 10/18/2024]
Abstract
Cell therapies for neurological disorders are entering the clinic and present unique challenges and opportunities compared with conventional medicines. They have the potential to replace damaged nervous tissue and integrate into the brain or spinal cord to produce functional effects for the lifetime of the patient, which could revolutionize the way clinicians treat debilitating neurological disorders. The major challenge has been cell sourcing, which historically relied mainly on fetal brain tissue. This has largely been overcome with the advent of pluripotent stem cell technology and the ability to make almost any cell of the nervous system at scale. Furthermore, advances in gene editing now allow the generation of genetically modified cells that could perform better and evade the immune system. With all the remarkable new approaches to treat neurological disorders, we take a critical look at the state of current clinical trials and how challenges may be overcome with the evolving technology and innovation occurring in the stem cell field.
Collapse
Affiliation(s)
- Soshana P Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA
| | - Clive N Svendsen
- Cedars-Sinai Board of Governors Regenerative Medicine Institute, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Gonzalez-Ramos A, Puigsasllosas-Pastor C, Arcas-Marquez A, Tornero D. Updated Toolbox for Assessing Neuronal Network Reconstruction after Cell Therapy. Bioengineering (Basel) 2024; 11:487. [PMID: 38790353 PMCID: PMC11118929 DOI: 10.3390/bioengineering11050487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Cell therapy has proven to be a promising treatment for a range of neurological disorders, including Parkinson Disease, drug-resistant epilepsy, and stroke, by restoring function after brain damage. Nevertheless, evaluating the true effectiveness of these therapeutic interventions requires a deep understanding of the functional integration of grafted cells into existing neural networks. This review explores a powerful arsenal of molecular techniques revolutionizing our ability to unveil functional integration of grafted cells within the host brain. From precise manipulation of neuronal activity to pinpoint the functional contribution of transplanted cells by using opto- and chemo-genetics, to real-time monitoring of neuronal dynamics shedding light on functional connectivity within the reconstructed circuits by using genetically encoded (calcium) indicators in vivo. Finally, structural reconstruction and mapping communication pathways between grafted and host neurons can be achieved by monosynaptic tracing with viral vectors. The cutting-edge toolbox presented here holds immense promise for elucidating the impact of cell therapy on neural circuitry and guiding the development of more effective treatments for neurological disorders.
Collapse
Affiliation(s)
- Ana Gonzalez-Ramos
- Stanley Center for Psychiatric Research at Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Claudia Puigsasllosas-Pastor
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ainhoa Arcas-Marquez
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Daniel Tornero
- Laboratory of Neural Stem Cells and Brain Damage, Department of Biomedical Sciences, Institute of Neurosciences, University of Barcelona, 08036 Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
| |
Collapse
|
6
|
Cao Z, Kong F, Ding J, Chen C, He F, Deng W. Promoting Alzheimer's disease research and therapy with stem cell technology. Stem Cell Res Ther 2024; 15:136. [PMID: 38715083 PMCID: PMC11077895 DOI: 10.1186/s13287-024-03737-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent form of dementia leading to memory loss, reduced cognitive and linguistic abilities, and decreased self-care. Current AD treatments aim to relieve symptoms and slow disease progression, but a cure is elusive due to limited understanding of the underlying disease mechanisms. MAIN CONTENT Stem cell technology has the potential to revolutionize AD research. With the ability to self-renew and differentiate into various cell types, stem cells are valuable tools for disease modeling, drug screening, and cell therapy. Recent advances have broadened our understanding beyond the deposition of amyloidβ (Aβ) or tau proteins in AD to encompass risk genes, immune system disorders, and neuron-glia mis-communication, relying heavily on stem cell-derived disease models. These stem cell-based models (e.g., organoids and microfluidic chips) simulate in vivo pathological processes with extraordinary spatial and temporal resolution. Stem cell technologies have the potential to alleviate AD pathology through various pathways, including immunomodulation, replacement of damaged neurons, and neurotrophic support. In recent years, transplantation of glial cells like oligodendrocytes and the infusion of exosomes have become hot research topics. CONCLUSION Although stem cell-based models and therapies for AD face several challenges, such as extended culture time and low differentiation efficiency, they still show considerable potential for AD treatment and are likely to become preferred tools for AD research.
Collapse
Affiliation(s)
- Zimeng Cao
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Fanshu Kong
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaqi Ding
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China
| | - Chunxia Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Fumei He
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
- School of Pharmaceutical Sciences, Dali University, Dali, 671000, China.
| | - Wenbin Deng
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, China.
| |
Collapse
|
7
|
Lin YC, Wuputra K, Kato K, Ku CC, Saito S, Noguchi M, Nakamura Y, Hsiao M, Lin CS, Wu DC, Kawaguchi A, Yu HS, Yokoyama KK. Di-n-butyl phthalate promotes the neural differentiation of mouse embryonic stem cells through neurogenic differentiation 1. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123722. [PMID: 38460589 DOI: 10.1016/j.envpol.2024.123722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/26/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
An understanding of the risk of gene deletion and mutation posed by endocrine-disrupting chemicals (EDCs) is necessary for the identification of etiological reagents for many human diseases. Therefore, the characterization of the genetic traits caused by developmental exposure to EDCs is an important research subject. A new regenerative approach using embryonic stem cells (ESCs) holds promise for the development of stem-cell-based therapies and the identification of novel therapeutic agents against human diseases. Here, we focused on the characterization of the genetic traits and alterations in pluripotency/stemness triggered by phthalate ester derivatives. Regarding their in vitro effects, we reported the abilities of ESCs regarding proliferation, cell-cycle control, and neural ectoderm differentiation. The expression of their stemness-related genes and their genetic changes toward neural differentiation were examined, which led to the observation that the tumor suppressor gene product p53/retinoblastoma protein 1 and its related cascades play critical functions in cell-cycle progression, cell death, and neural differentiation. In addition, the expression of neurogenic differentiation 1 was affected by exposure to di-n-butyl phthalate in the context of cell differentiation into neural lineages. The nervous system is one of the most sensitive tissues to exposure to phthalate ester derivatives. The present screening system provides a good tool for studying the mechanisms underlying the effects of EDCs on the developmental regulation of humans and rodents, especially on the neuronal development of ESCs.
Collapse
Affiliation(s)
- Ying-Chu Lin
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, 807, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Kohsuke Kato
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, 807, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita, Tochigi, 329-1571, Japan
| | - Michiya Noguchi
- Cell Engineering Division, BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Yukio Nakamura
- Cell Engineering Division, BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Michael Hsiao
- Genome Research Center, Academia Sinica, Nangan, Taipei, 115, Taiwan
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, 807, Taiwan; Department of Biological Sciences, National Sun Yan-Sen University, Kaohsiung, 80424, Taiwan
| | - Deng-Chyang Wu
- Graduate Institute of Medicine, Kaohsiung Medical University, 807, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan; Department of Gastroenterology, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan
| | - Atsushi Kawaguchi
- Department of Infection Biology, Faculty of Medicine and Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, 305-8577, Japan
| | - Hsin-Su Yu
- Emeritus Professor in College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan
| | - Kazunari K Yokoyama
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan; Graduate Institute of Medicine, Kaohsiung Medical University, 807, Taiwan; Regenerative Medicine and Cell Research Center, Kaohsiung Medical University, Kaohsiung, 807, Taiwan.
| |
Collapse
|
8
|
Witkin JM, Shafique H, Cerne R, Smith JL, Marini AM, Lipsky RH, Delery E. Mechanistic and therapeutic relationships of traumatic brain injury and γ-amino-butyric acid (GABA). Pharmacol Ther 2024; 256:108609. [PMID: 38369062 DOI: 10.1016/j.pharmthera.2024.108609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/18/2024] [Accepted: 02/01/2024] [Indexed: 02/20/2024]
Abstract
Traumatic brain injury (TBI) is a highly prevalent medical condition for which no medications specific for the prophylaxis or treatment of the condition as a whole exist. The spectrum of symptoms includes coma, headache, seizures, cognitive impairment, depression, and anxiety. Although it has been known for years that the inhibitory neurotransmitter γ-amino-butyric acid (GABA) is involved in TBI, no novel therapeutics based upon this mechanism have been introduced into clinical practice. We review the neuroanatomical, neurophysiological, neurochemical, and neuropharmacological relationships of GABA neurotransmission to TBI with a view toward new potential GABA-based medicines. The long-standing idea that excitatory and inhibitory (GABA and others) balances are disrupted by TBI is supported by the experimental data but has failed to invent novel methods of restoring this balance. The slow progress in advancing new treatments is due to the complexity of the disorder that encompasses multiple dynamically interacting biological processes including hemodynamic and metabolic systems, neurodegeneration and neurogenesis, major disruptions in neural networks and axons, frank brain lesions, and a multitude of symptoms that have differential neuronal and neurohormonal regulatory mechanisms. Although the current and ongoing clinical studies include GABAergic drugs, no novel GABA compounds are being explored. It is suggested that filling the gap in understanding the roles played by specific GABAA receptor configurations within specific neuronal circuits could help define new therapeutic approaches. Further research into the temporal and spatial delivery of GABA modulators should also be useful. Along with GABA modulation, research into the sequencing of GABA and non-GABA treatments will be needed.
Collapse
Affiliation(s)
- Jeffrey M Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; Departments of Neuroscience and Trauma Research, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA.
| | | | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA; RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA; Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Jodi L Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent Hospital, Indianapolis, IN, USA
| | - Ann M Marini
- Department of Neurology, Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Robert H Lipsky
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Elizabeth Delery
- College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Southwell DG. Interneuron Transplantation for Drug-Resistant Epilepsy. Neurosurg Clin N Am 2024; 35:151-160. [PMID: 38000838 DOI: 10.1016/j.nec.2023.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2023]
Abstract
Current epilepsy surgical techniques, such as brain resection, laser ablation, and neurostimulation, target seizure networks macroscopically, and they may yield an unfavorable balance between seizure reduction, procedural invasiveness, and neurologic morbidity. The transplantation of GABAergic interneurons is a regenerative technique for altering neural inhibition in cortical circuits, with potential as an alternative and minimally invasive approach to epilepsy treatment. This article (1) reviews some of the preclinical evidence supporting interneuron transplantation as an epilepsy therapy, (2) describes a first-in-human study of interneuron transplantation for epilepsy, and (3) considers knowledge gaps that stand before the effective clinical application of this novel treatment.
Collapse
Affiliation(s)
- Derek G Southwell
- Department of Neurosurgery, Graduate Program in Neurobiology, Duke University, DUMC 3807, 200 Trent Drive, Durham, NC 27710, USA.
| |
Collapse
|
10
|
Pidoplichko VI, Figueiredo TH, Braga MFM, Pan H, Marini AM. Alpha-linolenic acid enhances the facilitation of GABAergic neurotransmission in the BLA and CA1. Exp Biol Med (Maywood) 2023; 248:596-604. [PMID: 37208920 PMCID: PMC10350796 DOI: 10.1177/15353702231165010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/02/2023] [Indexed: 05/21/2023] Open
Abstract
Hyperexcitability is a major mechanism implicated in several neuropsychiatric disorders, such as organophosphate-induced status epilepticus (SE), primary epilepsy, stroke, spinal cord injury, traumatic brain injury, schizophrenia, and autism spectrum disorders. Underlying mechanisms are diverse, but a functional impairment and loss of GABAergic inhibitory neurons are common features in many of these disorders. While novel therapies abound to correct for the loss of GABAergic inhibitory neurons, it has been difficult at best to improve the activities of daily living for the majority of patients. Alpha-linolenic acid (ALA) is an essential omega-3 polyunsaturated fatty acid found in plants. ALA exerts pleiotropic effects in the brain that attenuate injury in chronic and acute brain disease models. However, the effect of ALA on GABAergic neurotransmission in hyperexcitable brain regions involved in neuropsychiatric disorders, such as the basolateral amygdala (BLA) and CA1 subfield of the hippocampus, is unknown. Administration of a single dose of ALA (1500 nmol/kg) subcutaneously increased the charge transfer of inhibitory postsynaptic potential currents mediated by GABAA receptors in pyramidal neurons by 52% in the BLA and by 92% in the CA1 compared to vehicle animals a day later. Similar results were obtained in pyramidal neurons from the BLA and CA1 when ALA was bath-applied in slices from naïve animals. Importantly, pretreatment with the high-affinity, selective TrkB inhibitor, k252, completely abolished the ALA-induced increase in GABAergic neurotransmission in the BLA and CA1, suggesting a brain-derived neurotrophic factor (BDNF)-mediated mechanism. Addition of mature BDNF (20 ng/mL) significantly increased GABAA receptor inhibitory activity in the BLA and CA1 pyramidal neurons similar to the results obtained with ALA. ALA may be an effective treatment for neuropsychiatric disorders where hyperexcitability is a major feature.
Collapse
Affiliation(s)
- Volodymir I Pidoplichko
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Taiza H Figueiredo
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Maria FM Braga
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Hongna Pan
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Ann M Marini
- Department of Neurology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
11
|
Akter M, Ding B. Modeling Movement Disorders via Generation of hiPSC-Derived Motor Neurons. Cells 2022; 11:3796. [PMID: 36497056 PMCID: PMC9737271 DOI: 10.3390/cells11233796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Generation of motor neurons (MNs) from human-induced pluripotent stem cells (hiPSCs) overcomes the limited access to human brain tissues and provides an unprecedent approach for modeling MN-related diseases. In this review, we discuss the recent progression in understanding the regulatory mechanisms of MN differentiation and their applications in the generation of MNs from hiPSCs, with a particular focus on two approaches: induction by small molecules and induction by lentiviral delivery of transcription factors. At each induction stage, different culture media and supplements, typical growth conditions and cellular morphology, and specific markers for validation of cell identity and quality control are specifically discussed. Both approaches can generate functional MNs. Currently, the major challenges in modeling neurological diseases using iPSC-derived neurons are: obtaining neurons with high purity and yield; long-term neuron culture to reach full maturation; and how to culture neurons more physiologically to maximize relevance to in vivo conditions.
Collapse
Affiliation(s)
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
12
|
Waloschková E, Gonzalez-Ramos A, Mikroulis A, Kudláček J, Andersson M, Ledri M, Kokaia M. Human Stem Cell-Derived GABAergic Interneurons Establish Efferent Synapses onto Host Neurons in Rat Epileptic Hippocampus and Inhibit Spontaneous Recurrent Seizures. Int J Mol Sci 2021; 22:ijms222413243. [PMID: 34948040 PMCID: PMC8705828 DOI: 10.3390/ijms222413243] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 11/17/2022] Open
Abstract
Epilepsy is a complex disorder affecting the central nervous system and is characterised by spontaneously recurring seizures (SRSs). Epileptic patients undergo symptomatic pharmacological treatments, however, in 30% of cases, they are ineffective, mostly in patients with temporal lobe epilepsy. Therefore, there is a need for developing novel treatment strategies. Transplantation of cells releasing γ-aminobutyric acid (GABA) could be used to counteract the imbalance between excitation and inhibition within epileptic neuronal networks. We generated GABAergic interneuron precursors from human embryonic stem cells (hESCs) and grafted them in the hippocampi of rats developing chronic SRSs after kainic acid-induced status epilepticus. Using whole-cell patch-clamp recordings, we characterised the maturation of the grafted cells into functional GABAergic interneurons in the host brain, and we confirmed the presence of functional inhibitory synaptic connections from grafted cells onto the host neurons. Moreover, optogenetic stimulation of grafted hESC-derived interneurons reduced the rate of epileptiform discharges in vitro. We also observed decreased SRS frequency and total time spent in SRSs in these animals in vivo as compared to non-grafted controls. These data represent a proof-of-concept that hESC-derived GABAergic neurons can exert a therapeutic effect on epileptic animals presumably through establishing inhibitory synapses with host neurons.
Collapse
Affiliation(s)
- Eliška Waloschková
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, 221 84 Lund, Sweden; (A.G.-R.); (A.M.); (J.K.); (M.A.); (M.L.)
- Correspondence: (E.W.); (M.K.)
| | - Ana Gonzalez-Ramos
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, 221 84 Lund, Sweden; (A.G.-R.); (A.M.); (J.K.); (M.A.); (M.L.)
| | - Apostolos Mikroulis
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, 221 84 Lund, Sweden; (A.G.-R.); (A.M.); (J.K.); (M.A.); (M.L.)
| | - Jan Kudláček
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, 221 84 Lund, Sweden; (A.G.-R.); (A.M.); (J.K.); (M.A.); (M.L.)
- Department of Physiology, Second Faculty of Medicine, Charles University, 150 06 Prague, Czech Republic
| | - My Andersson
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, 221 84 Lund, Sweden; (A.G.-R.); (A.M.); (J.K.); (M.A.); (M.L.)
| | - Marco Ledri
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, 221 84 Lund, Sweden; (A.G.-R.); (A.M.); (J.K.); (M.A.); (M.L.)
| | - Merab Kokaia
- Epilepsy Center, Department of Clinical Sciences, Lund University Hospital, 221 84 Lund, Sweden; (A.G.-R.); (A.M.); (J.K.); (M.A.); (M.L.)
- Correspondence: (E.W.); (M.K.)
| |
Collapse
|