1
|
Tao K, Gao Y, Yin H, Liang Q, Yang Q, Yu X. Comparative Mitogenome Analyses of Fifteen Ramshorn Snails and Insights into the Phylogeny of Planorbidae (Gastropoda: Hygrophila). Int J Mol Sci 2024; 25:2279. [PMID: 38396956 PMCID: PMC10889216 DOI: 10.3390/ijms25042279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Ramshorn snails from the family Planorbidae are important freshwater snails due to their low trophic level, and some of them act as intermediate hosts for zoonotic trematodes. There are about 250 species from 40 genera of Planorbidae, but only 14 species from 5 genera (Anisus, Biomphalaria, Bulinus, Gyraulus, and Planorbella) have sequenced complete mitochondrial genomes (mitogenomes). In this study, we sequenced and assembled a high-quality mitogenome of a ramshorn snail, Polypylis sp. TS-2018, which represented the first mitogenome of the genus. The mitogenome of Polypylis sp. TS-2018 is 13,749 bp in length, which is shorter than that of most gastropods. It contains 13 protein-coding genes (PCGs), 22 transfer RNA (tRNA) genes, and 2 ribosomal RNA (rRNA). We compared mitogenome characteristics, selection pressure, and gene rearrangement among all of the available mitogenomes of ramshorn snails. We found that the nonsynonymous and synonymous substitution rates (Ka/Ks) of most PCGs indicated purifying and negative selection, except for atp8 of Anisus, Biomphalaria, and Gyraulus, which indicated positive selection. We observed that transpositions and reverse transpositions occurred on 10 tRNAs and rrnS, which resulted in six gene arrangement types. We reconstructed the phylogenetic trees using the sequences of PCGs and rRNAs and strongly supported the monophyly of each genus, as well as three tribes in Planorbidae. Both the gene rearrangement and phylogenetic results suggested that Polypylis had a close relationship with Anisus and Gyraulus, while Bulinus was the sister group to all of the other genera. Our results provide useful data for further investigation of species identification, population genetics, and phylogenetics among ramshorn snails.
Collapse
Affiliation(s)
| | | | | | | | - Qianqian Yang
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (K.T.); (Y.G.); (H.Y.); (Q.L.)
| | - Xiaoping Yu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of Life Sciences, China Jiliang University, Hangzhou 310018, China; (K.T.); (Y.G.); (H.Y.); (Q.L.)
| |
Collapse
|
2
|
Angst P, Dexter E, Stillman JH. Genome assemblies of two species of porcelain crab, Petrolisthes cinctipes and Petrolisthes manimaculis (Anomura: Porcellanidae). G3 (BETHESDA, MD.) 2024; 14:jkad281. [PMID: 38079165 PMCID: PMC10849366 DOI: 10.1093/g3journal/jkad281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/09/2023] [Indexed: 02/09/2024]
Abstract
Crabs are a large subtaxon of the Arthropoda, the most diverse and species-rich metazoan group. Several outstanding questions remain regarding crab diversification, including about the genomic capacitors of physiological and morphological adaptation, that cannot be answered with available genomic resources. Physiologically and ecologically diverse Anomuran porcelain crabs offer a valuable model for investigating these questions and hence genomic resources of these crabs would be particularly useful. Here, we present the first two genome assemblies of congeneric and sympatric Anomuran porcelain crabs, Petrolisthes cinctipes and Petrolisthes manimaculis from different microhabitats. Pacific Biosciences high-fidelity sequencing led to genome assemblies of 1.5 and 0.9 Gb, with N50s of 706.7 and 218.9 Kb, respectively. Their assembly length difference can largely be attributed to the different levels of interspersed repeats in their assemblies: The larger genome of P. cinctipes has more repeats (1.12 Gb) than the smaller genome of P. manimaculis (0.54 Gb). For obtaining high-quality annotations of 44,543 and 40,315 protein-coding genes in P. cinctipes and P. manimaculis, respectively, we used RNA-seq as part of a larger annotation pipeline. Contrarily to the large-scale differences in repeat content, divergence levels between the two species as estimated from orthologous protein-coding genes are moderate. These two high-quality genome assemblies allow future studies to examine the role of environmental regulation of gene expression in the two focal species to better understand physiological response to climate change, and provide the foundation for studies in fine-scale genome evolution and diversification of crabs.
Collapse
Affiliation(s)
- Pascal Angst
- Department of Environmental Sciences, Zoology, University of Basel, 4051 Basel, Switzerland
| | - Eric Dexter
- Department of Environmental Sciences, Zoology, University of Basel, 4051 Basel, Switzerland
| | - Jonathon H Stillman
- Department of Environmental Sciences, Zoology, University of Basel, 4051 Basel, Switzerland
- Department of Biology, San Francisco State University, San Francisco, CA 94132, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Chang H, Guo J, Li M, Gao Y, Wang S, Wang X, Liu Y. Comparative genome and phylogenetic analysis revealed the complex mitochondrial genome and phylogenetic position of Conopomorpha sinensis Bradley. Sci Rep 2023; 13:4989. [PMID: 36973296 PMCID: PMC10042987 DOI: 10.1038/s41598-023-30570-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/27/2023] [Indexed: 03/29/2023] Open
Abstract
Conopomorpha sinensis Bradley is a destructive pest that causes severe economic damage to litchi and longan. Previous C. sinensis research has focused on population life tables, oviposition selectivity, pest population prediction, and control technology. However, there are few studies on its mitogenome and phylogenetic evolution. In this study, we sequenced the whole mitogenome of C. sinensis by the third-generation sequencing, and analyzed the characteristics of its mitogenome by comparative genome. The complete mitogenome of C. sinensis is a typical circular and double-stranded structure. The ENC-plot analyses revealed that natural selection could affect the information of codon bias of the protein-coding genes in the mitogenome of C. sinensis in the evolutionary process. Compared with 12 other Tineoidea species, the trnA-trnF gene cluster of tRNA in the C. sinensis mitogenome appears to have a new arrangement pattern. This new arrangement has not been found in other Tineoidea or other Lepidoptera, which needs further exploration. Meanwhile, a long AT repeated sequence was inserted between trnR and trnA, trnE and trnF, ND1 and trnS in the mitogenome of C. sinensis, and the reason for this sequence remains to be further studied. Furthermore, the results of phylogenetic analysis showed that the litchi fruit borer belonged to Gracillariidae, and Gracillariidae was monophyletic. The results will contribute to an improved understanding of the complex mitogenome and phylogeny of C. sinensis. It also will provide a molecular basis for further research on the genetic diversity and population differentiation of C. sinensis.
Collapse
Affiliation(s)
- Hong Chang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Jianglong Guo
- Key Laboratory of Integrated Pest Management On Crops in Northern Region of North China, Ministry of Agriculture and Rural Affairs, IPM Center of Hebei Province, Plant Protection Institute, Hebei Academy of Agricultural and Forestry Sciences, Baoding, 071000, China
| | - Mingzhi Li
- Bio&Data Biotechnologies Co. Ltd., Guangzhou, 510640, China
| | - Yan Gao
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Siwei Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Xiaonan Wang
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China
| | - Yanping Liu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou, 510640, China.
| |
Collapse
|
4
|
Pang X, Fu W, Feng J, Guo B, Lin X, Lu X. The Complete Mitochondrial Genome of the Hermit Crab Diogenes edwardsii (Anomura: Diogenidae) and Phylogenetic Relationships within Infraorder Anomura. Genes (Basel) 2023; 14:470. [PMID: 36833397 PMCID: PMC9956181 DOI: 10.3390/genes14020470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023] Open
Abstract
A complete mitochondrial genome (mitogenome) can provide important information for gene rearrangement, molecular evolution and phylogenetic analysis. Currently, only a few mitogenomes of hermit crabs (superfamily Paguridae) in the infraorder Anomura have been reported. This study reports the first complete mitogenome of the hermit crab Diogenes edwardsii assembled using high-throughput sequencing. The mitogenome of Diogenes edwardsii is 19,858 bp in length and comprises 13 protein-coding genes, 2 ribosomal RNA genes, and 22 transfer RNA genes. There are 28 and six genes observed on the heavy and light strands, respectively. The genome composition was highly A + T biased (72.16%), and exhibited a negative AT-skew (-0.110) and positive GC-skew (0.233). Phylogenetic analyses based on the nucleotide dataset of 16 Anomura species indicated that D. edwardsii was closest related to Clibanarius infraspinatus in the same family, Diogenidae. Positive selection analysis showed that two residues located in cox1 and cox2 were identified as positively selected sites with high BEB value (>95%), indicating that these two genes are under positive selection pressure. This is the first complete mitogenome of the genus Diogenes, and this finding helps us to represent a new genomic resource for hermit crab species and provide data for further evolutionary status of Diogenidae in Anomura.
Collapse
Affiliation(s)
- Xiaoke Pang
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenjing Fu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianfeng Feng
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Biao Guo
- Department of Fishery Resources, Tianjin Fisheries Research Institute, Tianjin 300457, China
| | - Xiaolong Lin
- Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai 201306, China
- Engineering Research Center of Environmental DNA and Ecological Water Health Assessment, Shanghai Ocean University, Shanghai 201306, China
| | - Xueqiang Lu
- Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution and Tianjin International Joint Research Center for Environmental Biogeochemical Technology, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
5
|
Colín A, Galván-Tirado C, Carreón-Palau L, Bracken-Grissom HD, Baeza JA. Mitochondrial genomes of the land hermit crab Coenobita clypeatus (Anomura: Paguroidea) and the mole crab Emerita talpoida (Anomura: Hippoidea) with insights into phylogenetic relationships in the Anomura (Crustacea: Decapoda). Gene X 2023; 849:146896. [DOI: 10.1016/j.gene.2022.146896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/31/2022] [Accepted: 09/12/2022] [Indexed: 11/28/2022] Open
|