1
|
De Lora JA, Aubermann F, Frey C, Jahnke T, Wang Y, Weber S, Platzman I, Spatz JP. Evaluation of Acoustophoretic and Dielectrophoretic Forces for Droplet Injection in Droplet-Based Microfluidic Devices. ACS OMEGA 2024; 9:16097-16105. [PMID: 38617618 PMCID: PMC11007716 DOI: 10.1021/acsomega.3c09881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Acoustophoretic forces have been successfully implemented into droplet-based microfluidic devices to manipulate droplets. These acoustophoretic forces in droplet microfluidic devices are typically generated as in acoustofluidic devices through transducer actuation of a piezoelectric substrate such as lithium niobate (LiNbO3), which is inherently accompanied by the emergence of electrical fields. Understanding acoustophoretic versus dielectrophoretic forces produced by electrodes and transducers within active microfluidic devices is important for the optimization of device performance during design iterations. In this case study, we design microfluidic devices with a droplet injection module and report an experimental strategy to deduce the respective contribution of the acoustophoretic versus dielectrophoretic forces for the observed droplet injection. Our PDMS-based devices comprise a standard oil-in-water droplet-generating module connected to a T-junction injection module featuring actuating electrodes. We use two different electrode geometries produced within the same PDMS slab as the droplet production/injection channels by filling low-melting-point metal alloy into channels that template the electrode geometries. When these electrodes are constructed on LiNbO3 as the substrate, they have a dual function as a piezoelectric transducer, which we call embedded liquid metal interdigitated transducers (elmIDTs). To decipher the contribution of acoustophoretic versus dielectrophoretic forces, we build the same devices on either piezoelectric LiNbO3 or nonpiezo active glass substrates with different combinations of physical device characteristics (i.e., elmIDT geometry and alignment) and operate in a range of phase spaces (i.e., frequency, voltage, and transducer polarity). We characterize devices using techniques such as laser Doppler vibrometry (LDV) and infrared imaging, along with evaluating droplet injection for our series of device designs, constructions, and operating parameters. Although we find that LiNbO3 device designs generate acoustic fields, we demonstrate that droplet injection occurs only due to dielectrophoretic forces. We deduce that droplet injection is caused by the coupled dielectrophoretic forces arising from the operation of elmIDTs rather than by acoustophoretic forces for this specific device design. We arrive at this conclusion because equivalent droplet injection occurs without the presence of an acoustic field using the same electrode designs on nonpiezo active glass substrate devices. This work establishes a methodology to pinpoint the major contributing force of droplet manipulation in droplet-based acoustomicrofluidics.
Collapse
Affiliation(s)
- Jacqueline A. De Lora
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Florian Aubermann
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Christoph Frey
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Timotheus Jahnke
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Yuanzhen Wang
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Sebastian Weber
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Ilia Platzman
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
| | - Joachim P. Spatz
- Department
of Cellular Biophysics, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Institute
for Molecular Systems Engineering (IMSE), Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany
- Max
Planck School Matter to Life, Jahnstraße 29, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Açıkgöz HN, Karaman A, Şahin MA, Çaylan ÖR, Büke GC, Yıldırım E, Eroğlu İC, Erson-Bensan AE, Çetin B, Özer MB. Assessment of silicon, glass, FR4, PDMS and PMMA as a chip material for acoustic particle/cell manipulation in microfluidics. ULTRASONICS 2023; 129:106911. [PMID: 36528906 DOI: 10.1016/j.ultras.2022.106911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/13/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
In the present study, the capabilities of different chip materials for acoustic particle manipulation have been assessed with the same microfluidic device architecture, under the same actuator and flow conditions. Silicon, glass, epoxy with fiberglass filling (FR4), polydimethylsiloxane (PDMS) and polymethyl methacrylate (PMMA) are considered as chip materials. The acoustophoretic chips in this study were manufactured with four different fabrication methods: plasma etching, chemical etching, micromachining and molding. A novel chip material, FR4, has been employed as a microfluidic chip material in acoustophoretic particle manipulation for the first time in literature, which combines the ease of manufacturing of polymer materials with improved acoustic performance. The acoustic particle manipulation performance is evaluated through acoustophoretic focusing experiments with 2μm and 12μm polystyrene microspheres and cultured breast cancer cell line (MDA-MB-231). Unlike the common approach in the literature, the piezoelectric materials were actuated with partitioned cross-polarized electrodes which allowed effective actuation of different family of chip materials. Different from previous studies, this study evaluates the performance of each acoustophoretic device through the perspective of synchronization of electrical, vibrational and acoustical resonances, considers the thermal performance of the chip materials with their effects on cell viability as well as manufacturability and scalability of their fabrication methods. We believe our study is an essential work towards the commercialization of acoustophoretic devices since it brings a critical understanding of the effect of chip material on device performance as well as the cost of achieving that performance.
Collapse
Affiliation(s)
- Hande N Açıkgöz
- Microfluidics & Lab-on-a-chip Research Group, Mech. Eng. Department, Bilkent University, Ankara 06800, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Alara Karaman
- Mech. Eng. Department, Middle East Technical University 06800 Ankara, Turkey
| | - M Akif Şahin
- Microfluidics & Lab-on-a-chip Research Group, Mech. Eng. Department, Bilkent University, Ankara 06800, Turkey; Mech. Eng. Department, Middle East Technical University 06800 Ankara, Turkey
| | - Ömer R Çaylan
- Department Materials Sci.Nanotech. Eng., TOBB Uni. Econ. Tech., 06510 Ankara, Turkey
| | - Göknur C Büke
- Department Materials Sci.Nanotech. Eng., TOBB Uni. Econ. Tech., 06510 Ankara, Turkey
| | - Ender Yıldırım
- Mech. Eng. Department, Middle East Technical University 06800 Ankara, Turkey
| | - İrem C Eroğlu
- Department Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - A Elif Erson-Bensan
- Department Biological Sciences, Middle East Technical University, 06800 Ankara, Turkey
| | - Barbaros Çetin
- Microfluidics & Lab-on-a-chip Research Group, Mech. Eng. Department, Bilkent University, Ankara 06800, Turkey; UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - M Bülent Özer
- Mech. Eng. Department, Middle East Technical University 06800 Ankara, Turkey.
| |
Collapse
|
3
|
Wei W, Wang Y, Wang Z, Duan X. Microscale acoustic streaming for biomedical and bioanalytical applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Lickert F, Bruus H, Rossi M. Constant-Power versus Constant-Voltage Actuation in Frequency Sweeps for Acoustofluidic Applications. MICROMACHINES 2022; 13:1886. [PMID: 36363908 PMCID: PMC9695504 DOI: 10.3390/mi13111886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
Supplying a piezoelectric transducer with constant voltage or constant power during a frequency sweep can lead to different results in the determination of the acoustofluidic resonance frequencies, which are observed when studying the acoustophoretic displacements and velocities of particles suspended in a liquid-filled microchannel. In this work, three cases are considered: (1) Constant input voltage into the power amplifier, (2) constant voltage across the piezoelectric transducer, and (3) constant average power dissipation in the transducer. For each case, the measured and the simulated responses are compared, and good agreement is obtained. It is shown that Case 1, the simplest and most frequently used approach, is largely affected by the impedance of the used amplifier and wiring, so it is therefore not suitable for a reproducible characterization of the intrinsic properties of the acoustofluidic device. Case 2 strongly favors resonances at frequencies yielding the lowest impedance of the piezoelectric transducer, so small details in the acoustic response at frequencies far from the transducer resonance can easily be missed. Case 3 provides the most reliable approach, revealing both the resonant frequency, where the power-efficiency is the highest, as well as other secondary resonances across the spectrum.
Collapse
Affiliation(s)
- Fabian Lickert
- Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| | - Henrik Bruus
- Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| | - Massimiliano Rossi
- Department of Physics, Technical University of Denmark, DTU Physics Building 309, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Sepehrirahnama S, Ray Mohapatra A, Oberst S, Chiang YK, Powell DA, Lim KM. Acoustofluidics 24: theory and experimental measurements of acoustic interaction force. LAB ON A CHIP 2022; 22:3290-3313. [PMID: 35969199 DOI: 10.1039/d2lc00447j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The motion of small objects in acoustophoresis depends on the acoustic radiation force and torque. These are nonlinear phenomena originating from wave scattering, and consist of primary and secondary components. The primary radiation force is the force acting on an object due to the incident field, in the absence of other objects. The secondary component, known as acoustic interaction force, accounts for the interaction among objects, and contributes to the clustering patterns of objects, as commonly observed in experiments. In this tutorial, the theory of acoustic interaction forces is presented using the force potential and partial-wave expansion approaches, and the distinguishing features of these forces such as rotational coupling and non-reciprocity are described. Theoretical results are compared to experimental measurements of interaction forces using a glass micro-capillary setup to explain the practical challenges. Finally, the phenomenon of clustering patterns induced by the close-range interaction of objects is demonstrated to point out the considerations about multiple collision and the predicted clustering patterns entirely due to the interaction force. Understanding the principles of acoustic interaction enables us to develop novel acoustofluidic applications beyond the typical processing of large populations of particles and with focus on the controlled manipulation of small clusters.
Collapse
Affiliation(s)
- Shahrokh Sepehrirahnama
- Centre for Audio, Acoustics and Vibration, University of Technology Sydney, Sydney, Australia.
| | - Abhishek Ray Mohapatra
- Mechanical Engineering Department, National University of Singapore, Singapore 117575, Singapore
| | - Sebastian Oberst
- Centre for Audio, Acoustics and Vibration, University of Technology Sydney, Sydney, Australia.
- School of Engineering and Information Technology, University of New South Wales, Canberra, Australia
| | - Yan Kei Chiang
- School of Engineering and Information Technology, University of New South Wales, Canberra, Australia
- Centre for Audio, Acoustics and Vibration, University of Technology Sydney, Sydney, Australia.
| | - David A Powell
- School of Engineering and Information Technology, University of New South Wales, Canberra, Australia
| | - Kian-Meng Lim
- Mechanical Engineering Department, National University of Singapore, Singapore 117575, Singapore
| |
Collapse
|