Polarization-sensitive optical responses from natural layered hydrated sodium sulfosalt gerstleyite.
Sci Rep 2022;
12:4242. [PMID:
35273338 PMCID:
PMC8913734 DOI:
10.1038/s41598-022-08235-8]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/04/2022] [Indexed: 11/25/2022] Open
Abstract
Multi-element layered materials have gained substantial attention in the context of achieving the customized light-matter interactions at subwavelength scale via stoichiometric engineering, which is crucial for the realization of miniaturized polarization-sensitive optoelectronic and nanophotonic devices. Herein, naturally occurring hydrated sodium sulfosalt gerstleyite is introduced as one new multi-element van der Waals (vdW) layered material. The mechanically exfoliated thin gerstleyite flakes are demonstrated to exhibit polarization-sensitive anisotropic linear and nonlinear optical responses including angle-resolved Raman scattering, anomalous wavelength-dependent linear dichroism transition, birefringence effect, and polarization-dependent third-harmonic generation (THG). Furthermore, the third-order nonlinear susceptibility of gerstleyite crystal is estimated by the probed flake thickness-dependent THG response. We envisage that our findings in the context of polarization-sensitive light-matter interactions in the exfoliated hydrated sulfosalt layers will be a valuable addition to the vdW layered material family and will have many implications in compact waveplates, on-chip photodetectors, optical sensors and switches, integrated photonic circuits, and nonlinear signal processing applications.
Collapse