1
|
Reicher V, Kovács T, Csibra B, Gácsi M. Potential interactive effect of positive expectancy violation and sleep on memory consolidation in dogs. Sci Rep 2024; 14:9487. [PMID: 38664506 PMCID: PMC11045790 DOI: 10.1038/s41598-024-60166-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
In dogs, as in humans, both emotional and learning pretreatment affect subsequent behaviour and sleep. Although learning often occurs in an emotional-social context, the emotion-learning interplay in such context remain mainly unknown. Aims were to assess the effects of Controlling versus Permissive (emotional factors) training (learning factors) styles on dogs' behaviour, learning performance, and sleep. Family dogs (N = 24) participated in two command learning sessions employing the two training styles with each session followed by assessment of learning performance, a 2-h-long non-invasive sleep EEG measurement, and a retest of learning performance. Pre- to post-sleep improvement in learning performance was evident in dogs that received the Permissive training during the second learning session, indicating that dogs that experienced a more rewarding situation than expected (positive expectancy violation) during the second training session showed improved learning success after their afternoon sleep. These results possibly indicate an interactive effect of expectancy violation and sleep on enhancing learning.
Collapse
Affiliation(s)
- Vivien Reicher
- Clinical and Developmental Neuropsychology Research Group, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary.
| | - Tímea Kovács
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Barbara Csibra
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Márta Gácsi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Comparative Ethology Research Group, Budapest, Hungary
| |
Collapse
|
2
|
Deshpande G, Zhao S, Waggoner P, Beyers R, Morrison E, Huynh N, Vodyanoy V, Denney TS, Katz JS. Two Separate Brain Networks for Predicting Trainability and Tracking Training-Related Plasticity in Working Dogs. Animals (Basel) 2024; 14:1082. [PMID: 38612321 PMCID: PMC11010877 DOI: 10.3390/ani14071082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Functional brain connectivity based on resting-state functional magnetic resonance imaging (fMRI) has been shown to be correlated with human personality and behavior. In this study, we sought to know whether capabilities and traits in dogs can be predicted from their resting-state connectivity, as in humans. We trained awake dogs to keep their head still inside a 3T MRI scanner while resting-state fMRI data was acquired. Canine behavior was characterized by an integrated behavioral score capturing their hunting, retrieving, and environmental soundness. Functional scans and behavioral measures were acquired at three different time points across detector dog training. The first time point (TP1) was prior to the dogs entering formal working detector dog training. The second time point (TP2) was soon after formal detector dog training. The third time point (TP3) was three months' post detector dog training while the dogs were engaged in a program of maintenance training for detection work. We hypothesized that the correlation between resting-state FC in the dog brain and behavior measures would significantly change during their detection training process (from TP1 to TP2) and would maintain for the subsequent several months of detection work (from TP2 to TP3). To further study the resting-state FC features that can predict the success of training, dogs at TP1 were divided into a successful group and a non-successful group. We observed a core brain network which showed relatively stable (with respect to time) patterns of interaction that were significantly stronger in successful detector dogs compared to failures and whose connectivity strength at the first time point predicted whether a given dog was eventually successful in becoming a detector dog. A second ontologically based flexible peripheral network was observed whose changes in connectivity strength with detection training tracked corresponding changes in behavior over the training program. Comparing dog and human brains, the functional connectivity between the brain stem and the frontal cortex in dogs corresponded to that between the locus coeruleus and left middle frontal gyrus in humans, suggestive of a shared mechanism for learning and retrieval of odors. Overall, the findings point toward the influence of phylogeny and ontogeny in dogs producing two dissociable functional neural networks.
Collapse
Affiliation(s)
- Gopikrishna Deshpande
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
- Department of Psychological Sciences, Auburn University, Auburn, AL 36849, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL 36849, USA
- Center for Neuroscience, Auburn University, Auburn, AL 36849, USA
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
- Department of Heritage Science and Technology, Indian Institute of Technology, Hyderabad 502285, India
| | - Sinan Zhao
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
| | - Paul Waggoner
- Canine Performance Sciences Program, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA;
| | - Ronald Beyers
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
| | - Edward Morrison
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, AL 36849, USA; (E.M.); (V.V.)
| | - Nguyen Huynh
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
| | - Vitaly Vodyanoy
- Department of Anatomy, Physiology & Pharmacology, Auburn University, Auburn, AL 36849, USA; (E.M.); (V.V.)
| | - Thomas S. Denney
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
- Department of Psychological Sciences, Auburn University, Auburn, AL 36849, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL 36849, USA
- Center for Neuroscience, Auburn University, Auburn, AL 36849, USA
| | - Jeffrey S. Katz
- Auburn University Neuroimaging Center, Department of Electrical & Computer Engineering, Auburn University, Auburn, AL 36849, USA; (S.Z.); (R.B.); (N.H.); (T.S.D.J.)
- Department of Psychological Sciences, Auburn University, Auburn, AL 36849, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL 36849, USA
- Center for Neuroscience, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
3
|
Iotchev IB, Bognár Z, Tóth K, Reicher V, Kis A, Kubinyi E. Sleep-physiological correlates of brachycephaly in dogs. Brain Struct Funct 2023; 228:2125-2136. [PMID: 37742302 PMCID: PMC10587206 DOI: 10.1007/s00429-023-02706-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/31/2023] [Indexed: 09/26/2023]
Abstract
The shape of the cranium is one of the most notable physical changes induced in domestic dogs through selective breeding and is measured using the cephalic index (CI). High CI (a ratio of skull width to skull length > 60) is characterized by a short muzzle and flat face and is referred to as brachycephaly. Brachycephalic dogs display some potentially harmful changes in neuroanatomy, and there are implications for differences in behavior, as well. The path from anatomy to cognition, however, has not been charted in its entirety. Here, we report that sleep-physiological markers of white-matter loss (high delta power, low frontal spindle frequency, i.e., spindle waves/s), along with a spectral profile for REM (low beta, high delta) associated with low intelligence in humans, are each linked to higher CI values in the dog. Additionally, brachycephalic subjects spent more time sleeping, suggesting that the sleep apnea these breeds usually suffer from increases daytime sleepiness. Within sleep, more time was spent in the REM sleep stage than in non-REM, while REM duration was correlated positively with the number of REM episodes across dogs. It is currently not clear if the patterns of sleep and sleep-stage duration are mainly caused by sleep-impairing troubles in breathing and thermoregulation, present a juvenile-like sleeping profile, or are caused by neuro-psychological conditions secondary to the effects of brachycephaly, e.g., frequent REM episodes are known to appear in human patients with depression. While future studies should more directly address the interplay of anatomy, physiology, and behavior within a single experiment, this represents the first description of how the dynamics of the canine brain covary with CI, as measured in resting companion dogs using a non-invasive sleep EEG methodology. The observations suggest that the neuroanatomical changes accompanying brachycephaly alter neural systems in a way that can be captured in the sleep EEG, thus supporting the utility of the latter in the study of canine brain health and function.
Collapse
Affiliation(s)
| | - Zsófia Bognár
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Katinka Tóth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Vivien Reicher
- Doctoral School of Biology, Eötvös Loránd University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- Developmental and Translational Neuroscience Research Group, Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Anna Kis
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
- ELTE-ELKH NAP Comparative Ethology Research Group, Budapest, Hungary
| | - Enikő Kubinyi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Lendület "Momentum" Companion Animal Research Group, Budapest, Hungary
- ELTE NAP Canine Brain Research Group, Budapest, Hungary
| |
Collapse
|
4
|
Carreiro C, Reicher V, Kis A, Gácsi M. Owner-rated hyperactivity/impulsivity is associated with sleep efficiency in family dogs: a non-invasive EEG study. Sci Rep 2023; 13:1291. [PMID: 36690703 PMCID: PMC9870861 DOI: 10.1038/s41598-023-28263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Subjective sleep disturbances are reported by humans with attention-deficit/hyperactivity disorder (ADHD). However, no consistent objective findings related to sleep disturbances led to the removal of sleep problems from ADHD diagnostic criteria. Dogs have been used as a model for human ADHD with questionnaires validated for this purpose. Also, their sleep physiology can be measured by non-invasive methods similarly to humans. In the current study, we recorded spontaneous sleep EEG in family dogs during a laboratory session. We analyzed the association of sleep macrostructure and deep sleep (NREM) slow-wave activity (SWA) with a validated owner-rated ADHD questionnaire, assessing inattention (IA), hyperactivity/impulsivity (H/I) and total (T) scores. Higher H/I and T were associated with lower sleep efficiency and longer time awake after initial drowsiness and NREM. IA showed no associations with sleep variables. Further, no association was found between ADHD scores and SWA. Our results are in line with human studies in which poor sleep quality reported by ADHD subjects is associated with some objective EEG macrostructural parameters. This suggests that natural variation in dogs' H/I is useful to gain a deeper insight of ADHD neural mechanisms.
Collapse
Affiliation(s)
- Cecília Carreiro
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
- Department of Ethology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Vivien Reicher
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
| | - Anna Kis
- Department of Ethology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Márta Gácsi
- Department of Ethology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
| |
Collapse
|
5
|
Smith M, Mendl M, Murrell JC. Associations between osteoarthritis and duration and quality of night-time rest in dogs. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Attachment towards the Owner Is Associated with Spontaneous Sleep EEG Parameters in Family Dogs. Animals (Basel) 2022; 12:ani12070895. [PMID: 35405884 PMCID: PMC8997010 DOI: 10.3390/ani12070895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Dogs have been shown to form attachment bonds towards their owners analogous to the human infant-parent attachment. In humans, the neurological background of variation in attachment and similar trait-like social behaviors has been described. It is known that certain sleep parameters are in association with an individual’s attachment-related traits. In the current study, we provide the first evidence that dogs’ attachment towards their owner is also associated to dogs’ sleep structure (the time they spend in the different sleep stages) as well as to their brain activity during sleep. Thus, as in humans, when dogs sleep in a novel environment (in the presence of their owners), differences in their attachment bond are reflected in their sleep EEG characteristics. Abstract Affective neuroscience studies have demonstrated the impact of social interactions on sleep quality. In humans, trait-like social behaviors, such as attachment, are related to sleep brain activity patterns. Our aim was to investigate associations between companion dogs’ spontaneous brain activity during sleep (in the presence of the owner) and their relevant behavior in a task-free social context assessing their attachment towards the owner. In random order, each dog participated in a non-invasive sleep electroencephalogram (EEG) measurement and in the Strange Situation Test (SST) to assess their attachment behavior. We found that higher attachment scores were associated with more time spent in NREM sleep, lower NREM alpha power activity and lower NREM alpha–delta anticorrelation. Our results reveal that, when dogs sleep in a novel environment in the company of their owners, differences in their attachment are reflected in their sleep EEG characteristics. This could be best explained by the different degree that owners could be used as a safe haven in an unfamiliar environment and during the unusual procedure of the first EEG measurement.
Collapse
|