1
|
Kucerenko A, Buddenkotte T, Apostolova I, Klutmann S, Ledig C, Buchert R. Incorporating label uncertainty during the training of convolutional neural networks improves performance for the discrimination between certain and inconclusive cases in dopamine transporter SPECT. Eur J Nucl Med Mol Imaging 2025; 52:1535-1548. [PMID: 39592475 DOI: 10.1007/s00259-024-06988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024]
Abstract
PURPOSE Deep convolutional neural networks (CNN) hold promise for assisting the interpretation of dopamine transporter (DAT)-SPECT. For improved communication of uncertainty to the user it is crucial to reliably discriminate certain from inconclusive cases that might be misclassified by strict application of a predefined decision threshold on the CNN output. This study tested two methods to incorporate existing label uncertainty during the training to improve the utility of the CNN sigmoid output for this task. METHODS Three datasets were used retrospectively: a "development" dataset (n = 1740) for CNN training, validation and testing, two independent out-of-distribution datasets (n = 640, 645) for testing only. In the development dataset, binary classification based on visual inspection was performed carefully by three well-trained readers. A ResNet-18 architecture was trained for binary classification of DAT-SPECT using either a randomly selected vote ("random vote training", RVT), the proportion of "reduced" votes ( "average vote training", AVT) or the majority vote (MVT) across the three readers as reference standard. Balanced accuracy was computed separately for "inconclusive" sigmoid outputs (within a predefined interval around the 0.5 decision threshold) and for "certain" (non-inconclusive) sigmoid outputs. RESULTS The proportion of "inconclusive" test cases that had to be accepted to achieve a given balanced accuracy in the "certain" test case was lower with RVT and AVT than with MVT in all datasets (e.g., 1.9% and 1.2% versus 2.8% for 98% balanced accuracy in "certain" test cases from the development dataset). In addition, RVT and AVT resulted in slightly higher balanced accuracy in all test cases independent of their certainty (97.3% and 97.5% versus 97.0% in the development dataset). CONCLUSION Making between-readers-discrepancy known to CNN during the training improves the utility of their sigmoid output to discriminate certain from inconclusive cases that might be misclassified by the CNN when the predefined decision threshold is strictly applied. This does not compromise on overall accuracy.
Collapse
Affiliation(s)
- Aleksej Kucerenko
- xAILab Bamberg, Chair of Explainable Machine Learning, Faculty of Information Systems and Applied Computer Sciences, Otto-Friedrich-University, Bamberg, Germany
| | - Thomas Buddenkotte
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Susanne Klutmann
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Christian Ledig
- xAILab Bamberg, Chair of Explainable Machine Learning, Faculty of Information Systems and Applied Computer Sciences, Otto-Friedrich-University, Bamberg, Germany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
2
|
Hafeez Y, Memon K, AL-Quraishi MS, Yahya N, Elferik S, Ali SSA. Explainable AI in Diagnostic Radiology for Neurological Disorders: A Systematic Review, and What Doctors Think About It. Diagnostics (Basel) 2025; 15:168. [PMID: 39857052 PMCID: PMC11764244 DOI: 10.3390/diagnostics15020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/22/2024] [Accepted: 01/08/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Artificial intelligence (AI) has recently made unprecedented contributions in every walk of life, but it has not been able to work its way into diagnostic medicine and standard clinical practice yet. Although data scientists, researchers, and medical experts have been working in the direction of designing and developing computer aided diagnosis (CAD) tools to serve as assistants to doctors, their large-scale adoption and integration into the healthcare system still seems far-fetched. Diagnostic radiology is no exception. Imagining techniques like magnetic resonance imaging (MRI), computed tomography (CT), and positron emission tomography (PET) scans have been widely and very effectively employed by radiologists and neurologists for the differential diagnoses of neurological disorders for decades, yet no AI-powered systems to analyze such scans have been incorporated into the standard operating procedures of healthcare systems. Why? It is absolutely understandable that in diagnostic medicine, precious human lives are on the line, and hence there is no room even for the tiniest of mistakes. Nevertheless, with the advent of explainable artificial intelligence (XAI), the old-school black boxes of deep learning (DL) systems have been unraveled. Would XAI be the turning point for medical experts to finally embrace AI in diagnostic radiology? This review is a humble endeavor to find the answers to these questions. Methods: In this review, we present the journey and contributions of AI in developing systems to recognize, preprocess, and analyze brain MRI scans for differential diagnoses of various neurological disorders, with special emphasis on CAD systems embedded with explainability. A comprehensive review of the literature from 2017 to 2024 was conducted using host databases. We also present medical domain experts' opinions and summarize the challenges up ahead that need to be addressed in order to fully exploit the tremendous potential of XAI in its application to medical diagnostics and serve humanity. Results: Forty-seven studies were summarized and tabulated with information about the XAI technology and datasets employed, along with performance accuracies. The strengths and weaknesses of the studies have also been discussed. In addition, the opinions of seven medical experts from around the world have been presented to guide engineers and data scientists in developing such CAD tools. Conclusions: Current CAD research was observed to be focused on the enhancement of the performance accuracies of the DL regimens, with less attention being paid to the authenticity and usefulness of explanations. A shortage of ground truth data for explainability was also observed. Visual explanation methods were found to dominate; however, they might not be enough, and more thorough and human professor-like explanations would be required to build the trust of healthcare professionals. Special attention to these factors along with the legal, ethical, safety, and security issues can bridge the current gap between XAI and routine clinical practice.
Collapse
Affiliation(s)
- Yasir Hafeez
- Faculty of Science and Engineering, University of Nottingham, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia;
| | - Khuhed Memon
- Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia; (K.M.); (N.Y.)
| | - Maged S. AL-Quraishi
- Interdisciplinary Research Center for Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.S.A.-Q.); (S.E.)
| | - Norashikin Yahya
- Centre for Intelligent Signal and Imaging Research, Department of Electrical and Electronic Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia; (K.M.); (N.Y.)
| | - Sami Elferik
- Interdisciplinary Research Center for Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; (M.S.A.-Q.); (S.E.)
| | - Syed Saad Azhar Ali
- Aerospace Engineering Department and Interdisciplinary Research Center for Smart Mobility and Logistics, and Interdisciplinary Research Center Aviation and Space Exploration, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| |
Collapse
|
3
|
Budenkotte T, Apostolova I, Opfer R, Krüger J, Klutmann S, Buchert R. Automated identification of uncertain cases in deep learning-based classification of dopamine transporter SPECT to improve clinical utility and acceptance. Eur J Nucl Med Mol Imaging 2024; 51:1333-1344. [PMID: 38133688 PMCID: PMC10957699 DOI: 10.1007/s00259-023-06566-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Deep convolutional neural networks (CNN) are promising for automatic classification of dopamine transporter (DAT)-SPECT images. Reporting the certainty of CNN-based decisions is highly desired to flag cases that might be misclassified and, therefore, require particularly careful inspection by the user. The aim of the current study was to design and validate a CNN-based system for the identification of uncertain cases. METHODS A network ensemble (NE) combining five CNNs was trained for binary classification of [123I]FP-CIT DAT-SPECT images as "normal" or "neurodegeneration-typical reduction" with high accuracy (NE for classification, NEfC). An uncertainty detection module (UDM) was obtained by combining two additional NE, one trained for detection of "reduced" DAT-SPECT with high sensitivity, the other with high specificity. A case was considered "uncertain" if the "high sensitivity" NE and the "high specificity" NE disagreed. An internal "development" dataset of 1740 clinical DAT-SPECT images was used for training (n = 1250) and testing (n = 490). Two independent datasets with different image characteristics were used for testing only (n = 640, 645). Three established approaches for uncertainty detection were used for comparison (sigmoid, dropout, model averaging). RESULTS In the test data from the development dataset, the NEfC achieved 98.0% accuracy. 4.3% of all test cases were flagged as "uncertain" by the UDM: 2.5% of the correctly classified cases and 90% of the misclassified cases. NEfC accuracy among "certain" cases was 99.8%. The three comparison methods were less effective in labelling misclassified cases as "uncertain" (40-80%). These findings were confirmed in both additional test datasets. CONCLUSION The UDM allows reliable identification of uncertain [123I]FP-CIT SPECT with high risk of misclassification. We recommend that automatic classification of [123I]FP-CIT SPECT images is combined with an UDM to improve clinical utility and acceptance. The proposed UDM method ("high sensitivity versus high specificity") might be useful also for DAT imaging with other ligands and for other binary classification tasks.
Collapse
Affiliation(s)
- Thomas Budenkotte
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | | | | | - Susanne Klutmann
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
4
|
Champendal M, Müller H, Prior JO, Dos Reis CS. A scoping review of interpretability and explainability concerning artificial intelligence methods in medical imaging. Eur J Radiol 2023; 169:111159. [PMID: 37976760 DOI: 10.1016/j.ejrad.2023.111159] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE To review eXplainable Artificial Intelligence/(XAI) methods available for medical imaging/(MI). METHOD A scoping review was conducted following the Joanna Briggs Institute's methodology. The search was performed on Pubmed, Embase, Cinhal, Web of Science, BioRxiv, MedRxiv, and Google Scholar. Studies published in French and English after 2017 were included. Keyword combinations and descriptors related to explainability, and MI modalities were employed. Two independent reviewers screened abstracts, titles and full text, resolving differences through discussion. RESULTS 228 studies met the criteria. XAI publications are increasing, targeting MRI (n = 73), radiography (n = 47), CT (n = 46). Lung (n = 82) and brain (n = 74) pathologies, Covid-19 (n = 48), Alzheimer's disease (n = 25), brain tumors (n = 15) are the main pathologies explained. Explanations are presented visually (n = 186), numerically (n = 67), rule-based (n = 11), textually (n = 11), and example-based (n = 6). Commonly explained tasks include classification (n = 89), prediction (n = 47), diagnosis (n = 39), detection (n = 29), segmentation (n = 13), and image quality improvement (n = 6). The most frequently provided explanations were local (78.1 %), 5.7 % were global, and 16.2 % combined both local and global approaches. Post-hoc approaches were predominantly employed. The used terminology varied, sometimes indistinctively using explainable (n = 207), interpretable (n = 187), understandable (n = 112), transparent (n = 61), reliable (n = 31), and intelligible (n = 3). CONCLUSION The number of XAI publications in medical imaging is increasing, primarily focusing on applying XAI techniques to MRI, CT, and radiography for classifying and predicting lung and brain pathologies. Visual and numerical output formats are predominantly used. Terminology standardisation remains a challenge, as terms like "explainable" and "interpretable" are sometimes being used indistinctively. Future XAI development should consider user needs and perspectives.
Collapse
Affiliation(s)
- Mélanie Champendal
- School of Health Sciences HESAV, HES-SO, University of Applied Sciences Western Switzerland, Lausanne, CH, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH, Switzerland.
| | - Henning Müller
- Informatics Institute, University of Applied Sciences Western Switzerland (HES-SO Valais) Sierre, CH, Switzerland; Medical faculty, University of Geneva, CH, Switzerland.
| | - John O Prior
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH, Switzerland; Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital (CHUV), Lausanne, CH, Switzerland.
| | - Cláudia Sá Dos Reis
- School of Health Sciences HESAV, HES-SO, University of Applied Sciences Western Switzerland, Lausanne, CH, Switzerland.
| |
Collapse
|
5
|
Apostolova I, Schiebler T, Lange C, Mathies FL, Lehnert W, Klutmann S, Buchert R. Stereotactical normalization with multiple templates representative of normal and Parkinson-typical reduction of striatal uptake improves the discriminative power of automatic semi-quantitative analysis in dopamine transporter SPECT. EJNMMI Phys 2023; 10:25. [PMID: 36991245 DOI: 10.1186/s40658-023-00544-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND The specific binding ratio (SBR) of 123I-FP-CIT in the putamen is widely used to support the interpretation of dopamine transporter (DAT) SPECT. Automatic methods for computation of the putamen SBR often include stereotactical normalization of the individual DAT-SPECT image to an anatomical standard space. This study compared using a single 123I-FP-CIT template image as target for stereotactical normalization versus multiple templates representative of normal and different levels of Parkinson-typical reduction of striatal 123I-FP-CIT uptake. METHODS 1702 clinical 123I-FP-CIT SPECT images were stereotactically normalized (affine) to the anatomical space of the Montreal Neurological Institute (MNI) with SPM12 either using a single custom-made 123I-FP-CIT template representative of normal striatal uptake or using eight different templates representative of normal and different levels of Parkinson-typical reduction of striatal FP-CIT uptake with and without attenuation and scatter correction. In the latter case, SPM finds the linear combination of the multiple templates that best matches the patient's image. The putamen SBR was obtained using hottest voxels analysis in large unilateral regions-of-interest predefined in MNI space. The histogram of the putamen SBR in the whole sample was fitted by the sum of two Gaussians. The power to differentiate between reduced and normal SBR was estimated by the effect size of the distance between the two Gaussians computed as the differences between their mean values scaled to their pooled standard deviation. RESULTS The effect size of the distance between the two Gaussians was 3.83 with the single template versus 3.96 with multiple templates for stereotactical normalization. CONCLUSIONS Multiple templates representative of normal and different levels of Parkinson-typical reduction for stereotactical normalization of DAT-SPECT might provide improved separation between normal and reduced putamen SBR that could result in slightly improved power for the detection of nigrostriatal degeneration.
Collapse
Affiliation(s)
- Ivayla Apostolova
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Tassilo Schiebler
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Catharina Lange
- Department of Nuclear Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Franziska Lara Mathies
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Wencke Lehnert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Susanne Klutmann
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ralph Buchert
- Department of Diagnostic and Interventional Radiology and Nuclear Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
| |
Collapse
|
6
|
Prange S, Theis H, Banwinkler M, van Eimeren T. Molecular Imaging in Parkinsonian Disorders—What’s New and Hot? Brain Sci 2022; 12:brainsci12091146. [PMID: 36138882 PMCID: PMC9496752 DOI: 10.3390/brainsci12091146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Highlights Abstract Neurodegenerative parkinsonian disorders are characterized by a great diversity of clinical symptoms and underlying neuropathology, yet differential diagnosis during lifetime remains probabilistic. Molecular imaging is a powerful method to detect pathological changes in vivo on a cellular and molecular level with high specificity. Thereby, molecular imaging enables to investigate functional changes and pathological hallmarks in neurodegenerative disorders, thus allowing to better differentiate between different forms of degenerative parkinsonism, improve the accuracy of the clinical diagnosis and disentangle the pathophysiology of disease-related symptoms. The past decade led to significant progress in the field of molecular imaging, including the development of multiple new and promising radioactive tracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) as well as novel analytical methods. Here, we review the most recent advances in molecular imaging for the diagnosis, prognosis, and mechanistic understanding of parkinsonian disorders. First, advances in imaging of neurotransmission abnormalities, metabolism, synaptic density, inflammation, and pathological protein aggregation are reviewed, highlighting our renewed understanding regarding the multiplicity of neurodegenerative processes involved in parkinsonian disorders. Consequently, we review the role of molecular imaging in the context of disease-modifying interventions to follow neurodegeneration, ensure stratification, and target engagement in clinical trials.
Collapse
Affiliation(s)
- Stéphane Prange
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Université de Lyon, 69675 Bron, France
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| | - Hendrik Theis
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Magdalena Banwinkler
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| |
Collapse
|
7
|
Pavel DG, Henderson TA, DeBruin S, Cohen PF. The Legacy of the TTASAAN Report - Premature Conclusions and Forgotten Promises About SPECT Neuroimaging: A Review of Policy and Practice Part II. Front Neurol 2022; 13:851609. [PMID: 35655621 PMCID: PMC9152128 DOI: 10.3389/fneur.2022.851609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Brain perfusion single photon emission computed tomography (SPECT) scans were initially developed in 1970s. A key radiopharmaceutical, hexamethylpropyleneamine oxime (HMPAO), was not stabilized until 1993 and most early SPECT scans were performed on single-head gamma cameras. These early scans were of inferior quality. In 1996, the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology (TTASAAN) issued a report regarding the use of SPECT in the evaluation of neurological disorders. This two-part series explores the policies and procedures related to perfusion SPECT functional neuroimaging. In Part I, the comparison between the quality of the SPECT scans and the depth of the data for key neurological and psychiatric indications at the time of the TTASAAN report vs. the intervening 25 years were presented. In Part II, the technical aspects of perfusion SPECT neuroimaging and image processing will be explored. The role of color scales will be reviewed and the process of interpreting a SPECT scan will be presented. Interpretation of a functional brain scans requires not only anatomical knowledge, but also technical understanding on correctly performing a scan, regardless of the scanning modality. Awareness of technical limitations allows the clinician to properly interpret a functional brain scan. With this foundation, four scenarios in which perfusion SPECT neuroimaging, together with other imaging modalities and testing, lead to a narrowing of the differential diagnoses and better treatment. Lastly, recommendations for the revision of current policies and practices are made.
Collapse
Affiliation(s)
- Dan G Pavel
- PathFinder Brain SPECT, Deerfield, IL, United States.,The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States
| | - Theodore A Henderson
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,The Synaptic Space, Inc., Denver, CO, United States.,Neuro-Luminance, Inc., Denver, CO, United States.,Dr. Theodore Henderson, Inc., Denver, CO, United States.,Neuro-Laser Foundation, Denver, CO, United States
| | - Simon DeBruin
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,Good Lion Imaging, Baltimore, MD, United States
| | - Philip F Cohen
- The International Society of Applied Neuroimaging (ISAN), Denver, CO, United States.,Nuclear Medicine, Lions Gate Hospital, Vancouver, BC, Canada.,Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
8
|
Decoding the dopamine transporter imaging for the differential diagnosis of parkinsonism using deep learning. Eur J Nucl Med Mol Imaging 2022; 49:2798-2811. [PMID: 35588012 PMCID: PMC9206631 DOI: 10.1007/s00259-022-05804-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
Purpose
This work attempts to decode the discriminative information in dopamine transporter (DAT) imaging using deep learning for the differential diagnosis of parkinsonism. Methods This study involved 1017 subjects who underwent DAT PET imaging ([11C]CFT) including 43 healthy subjects and 974 parkinsonian patients with idiopathic Parkinson’s disease (IPD), multiple system atrophy (MSA) or progressive supranuclear palsy (PSP). We developed a 3D deep convolutional neural network to learn distinguishable DAT features for the differential diagnosis of parkinsonism. A full-gradient saliency map approach was employed to investigate the functional basis related to the decision mechanism of the network. Furthermore, deep-learning-guided radiomics features and quantitative analysis were compared with their conventional counterparts to further interpret the performance of deep learning. Results The proposed network achieved area under the curve of 0.953 (sensitivity 87.7%, specificity 93.2%), 0.948 (sensitivity 93.7%, specificity 97.5%), and 0.900 (sensitivity 81.5%, specificity 93.7%) in the cross-validation, together with sensitivity of 90.7%, 84.1%, 78.6% and specificity of 88.4%, 97.5% 93.3% in the blind test for the differential diagnosis of IPD, MSA and PSP, respectively. The saliency map demonstrated the most contributed areas determining the diagnosis located at parkinsonism-related regions, e.g., putamen, caudate and midbrain. The deep-learning-guided binding ratios showed significant differences among IPD, MSA and PSP groups (P < 0.001), while the conventional putamen and caudate binding ratios had no significant difference between IPD and MSA (P = 0.24 and P = 0.30). Furthermore, compared to conventional radiomics features, there existed average above 78.1% more deep-learning-guided radiomics features that had significant differences among IPD, MSA and PSP. Conclusion This study suggested the developed deep neural network can decode in-depth information from DAT and showed potential to assist the differential diagnosis of parkinsonism. The functional regions supporting the diagnosis decision were generally consistent with known parkinsonian pathology but provided more specific guidance for feature selection and quantitative analysis. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-022-05804-x.
Collapse
|