1
|
Apinjoh TO, Tangi LN, Oriero EC, Drammeh S, Ntui-Njock VN, Etoketim B, Chi HF, Kwi PN, Njie B, Oboh MA, Achidi EA, Amambua-Ngwa A. Histidine-rich protein (hrp) 2-based RDT false-negatives and Plasmodium falciparum hrp 2 and 3 gene deletions in low, seasonal and intense perennial transmission zones in Cameroon: a cross - sectional study. BMC Infect Dis 2024; 24:1080. [PMID: 39350071 PMCID: PMC11443727 DOI: 10.1186/s12879-024-09935-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND False negative rapid diagnostic tests (RDTs) accruing to the non-detection of Plasmodium falciparum histidine-rich protein 2/3 (Pfhrp2/3) is threatening the diagnosis and management of malaria. Although regular monitoring is necessary to gauge the level of efficacy of the tool, studies in Cameroon remain limited. This study assessed Plasmodium spp. prevalence and Pfhrp2/3 gene deletions across ecological and transmission zones in Cameroon. METHODS This is a cross-sectional, multi-site, community- and hospital- based study, in 21 health facilities and 14 communities covering all five ecological settings in low seasonal (LS) and intense perennial (IPT) malaria transmission zones between 2019 and 2021. Participants were screened for malaria parasite using Pfhrp2 RDT and light microscopic examination of thick peripheral blood smears. DNA was extracted from dried blood spot using chelex®-100 and P. falciparum confirmed using varATS real-time quantitative Polymerase Chain Reaction (qPCR), P. malariae and P. ovale by real-time qPCR of Plasmepsin gene, and P. vivax using a commercial kit. Isolates with amplified Pfcsp and Pfama-1 genes were assayed for Pfhrp 2/3 gene deletions by conventional PCR. RESULTS A total of 3,373 participants enrolled, 1,786 Plasmodium spp. infected, with 77.4% P. falciparum. Discordant RDT and qPCR results (False negatives) were reported in 191 (15.7%) P. falciparum mono-infected samples from LS (29%, 42) and IPT (13.9%, 149). The Pfhrp2+/Pfhrp3 + genotype was most frequent, similar between LS (5.5%, 8/145) and IPT (6.0%, 65/1,076). Single Pfhrp2 and Pfhrp3 gene deletions occurred in LS (0.7%, 1/145 each) and IPT (3.6%, 39/1,076 vs. 2.9%, 31/1,076), respectively. Whilst a single sample harboured Pfhrp2-/Pfhrp3- genotype in LS, 2.4% (26/1,076) were double deleted at IPT. Pfhrp2+/Pfhrp3- (0.3%, 3/1,076) and Pfhrp2-/Pfhrp3+ (1.2%, 13/1,076) genotypes were only observed in IPT. Pfhrp2, Pfhrp3 deletions and Pfhrp2-/Pfhrp3- genotype accounted for 78.8% (26), 69.7% (23) and 63.6% (21) RDT false negatives, respectively. CONCLUSION Plasmodium falciparum remains the most dominant and widely distributed Plasmodium species across transmission and ecological zones in Cameroon. Although the low prevalence of Pfhrp2/3 gene deletions supports the continued use of HRP2-based RDTs for routine malaria diagnosis, the high proportion of false-negatives due to gene deleted parasites necessitates continued surveillance to inform control and elimination efforts.
Collapse
Affiliation(s)
- Tobias Obejum Apinjoh
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon.
- Department of Chemical and Biological Engineering, The University of Bamenda, Bambili, Cameroon.
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia.
| | - Livinus Ngu Tangi
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Eniyou Cheryll Oriero
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Sainabou Drammeh
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | | | - Blessed Etoketim
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Hanesh Fru Chi
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Pilate Nkineh Kwi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Bekai Njie
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Mary Aigbiremo Oboh
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Eric Akum Achidi
- Department of Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, The Gambia.
| |
Collapse
|
2
|
Mediavilla A, Silgado A, Febrer-Sendra B, Crego-Vicente B, Martínez-Vallejo P, Maturana CR, Goterris L, Nindia A, Martínez-Campreciós J, Aixut S, Aznar-Ruiz-de-Alegría ML, Fernández-Soto P, Muro A, Salvador F, Molina I, Berzosa P, Oliveira-Souto I, Sulleiro E. Real-time PCR for malaria diagnosis and identification of Plasmodium species in febrile patients in Cubal, Angola. Parasit Vectors 2024; 17:384. [PMID: 39261971 PMCID: PMC11389249 DOI: 10.1186/s13071-024-06467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/24/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Malaria is the parasitic disease with the highest morbimortality worldwide. The World Health Organization (WHO) estimates that there were approximately 249 million cases in 2022, of which 3.4% were in Angola. Diagnosis is based on parasite identification by microscopy examination, antigen detection, and/or molecular tests, such as polymerase chain reaction (PCR). This study aimed to evaluate the usefulness of real-time PCR as a diagnostic method for malaria in an endemic area (Cubal, Angola). METHODS A cross-sectional study was carried out at the Hospital Nossa Senhora da Paz in Cubal, Angola, including 200 patients who consulted for febrile syndrome between May and July 2022. From each patient, a capillary blood sample was obtained by finger prick for malaria field diagnosis [microscopy and rapid diagnostic test (RDT)] and venous blood sample for real-time PCR performed at the Hospital Universitario Vall d'Hebron in Barcelona, Spain. Any participant with a positive result from at least one of these three methods was diagnosed with malaria. RESULTS Of the 200 participants included, 54% were female and the median age was 7 years. Malaria was diagnosed by at least one of the three techniques (microscopy, RDT, and/or real-time PCR) in 58% of the participants, with RDT having the highest percentage of positivity (49%), followed by real-time PCR (39.5%) and microscopy (33.5%). Of the 61 discordant samples, 4 were only positive by microscopy, 13 by real-time PCR, and 26 by RDT. Plasmodium falciparum was the most frequent species detected (90.63%), followed by P. malariae (17.19%) and P. ovale (9.38%). Coinfections were detected in ten participants (15.63%): six (60%) were caused by P. falciparum and P. malariae, three (30%) by P. falciparum and P. ovale, and one (10%) triple infection with these three species. In addition, it was observed that P. falciparum and P. malariae coinfection significantly increased the parasite density of the latter. CONCLUSIONS RDT was the technique with the highest positivity rate, followed by real-time PCR and microscopy. The results of the real-time PCR may have been underestimated due to suboptimal storage conditions during the transportation of the DNA eluates. However, real-time PCR techniques have an important role in the surveillance of circulating Plasmodium species, given the epidemiological importance of the increase in non-falciparum species in the country, and can provide an estimate of the intensity of infection.
Collapse
Affiliation(s)
- Alejandro Mediavilla
- Microbiology Department, Vall d'Hebron University Hospital, Autonomous University of Barcelona, PROSICS Barcelona, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Aroa Silgado
- Microbiology Department, Vall d'Hebron University Hospital, Autonomous University of Barcelona, PROSICS Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Begoña Febrer-Sendra
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Center for Research in Tropical Diseases of the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Beatriz Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Center for Research in Tropical Diseases of the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Patricia Martínez-Vallejo
- Microbiology Department, Vall d'Hebron University Hospital, Autonomous University of Barcelona, PROSICS Barcelona, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Carles Rubio Maturana
- Microbiology Department, Vall d'Hebron University Hospital, Autonomous University of Barcelona, PROSICS Barcelona, Barcelona, Spain
- Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - Lidia Goterris
- Microbiology Department, Vall d'Hebron University Hospital, Autonomous University of Barcelona, PROSICS Barcelona, Barcelona, Spain
| | | | - Joan Martínez-Campreciós
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
| | - Sandra Aixut
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
| | - María Luisa Aznar-Ruiz-de-Alegría
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
| | - Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Center for Research in Tropical Diseases of the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Center for Research in Tropical Diseases of the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Fernando Salvador
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
| | - Israel Molina
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain
| | - Pedro Berzosa
- Malaria and Neglected Tropical Diseases Laboratory, National Centre for Tropical Medicine, Carlos III Health Institute, CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Inés Oliveira-Souto
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain.
| | - Elena Sulleiro
- Microbiology Department, Vall d'Hebron University Hospital, Autonomous University of Barcelona, PROSICS Barcelona, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
- International Health Unit Vall d'Hebron-Drassanes, Infectious Diseases Department, Vall d'Hebron University Hospital, PROSICS Barcelona, Barcelona, Spain.
| |
Collapse
|
3
|
Kabalu Tshiongo J, Luzolo F, Kabena M, Kuseke L, Djimde M, Mitashi P, Lumbala C, Kayentao K, Menting S, Mens PF, Schallig HDFH, Lutumba P, Tinto H, Muhindo Mavoko H, Maketa V. Performance of ultra-sensitive malaria rapid diagnostic test to detect Plasmodium falciparum infection in pregnant women in Kinshasa, the Democratic Republic of the Congo. Malar J 2023; 22:322. [PMID: 37872634 PMCID: PMC10594769 DOI: 10.1186/s12936-023-04749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/11/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Low peripheral parasitaemia caused by sequestration of Plasmodium falciparum in the placenta hampers the diagnosis of malaria in pregnant women, leading to microscopy or conventional rapid diagnostic tests (RDTs) false-negative results. Although mainly asymptomatic, maternal malaria remains harmful to pregnant women and their offspring in endemic settings and must be adequately diagnosed. Ultra-sensitive RDTs (uRDTs) are thought to be more sensitive than RDTs, and their diagnostic performance was assessed in the current study in pregnant women living in Kinshasa, a stable malaria transmission area in the Democratic Republic of the Congo. METHODS To assess and compare the diagnostic performances of both RDTs and uRDTs, 497 peripheral blood samples were tested using microscopy and quantitative polymerase chain reaction (qPCR) as the index and the reference tests, respectively. The agreement between the different diagnostic tests assessed was estimated by Cohen's Kappa test. RESULTS The median parasite density by qPCR was 292 p/μL of blood [IQR (49.7-1137)]. Using qPCR as the reference diagnostic test, the sensitivities of microscopy, RDT and uRDT were respectively [55.7% (95% CI 47.6-63.6)], [81.7% (95%CI 74.7-87.3)] and [88% (95% CI 81.9-92.6)]. The specificities of the tests were calculated at 98.5% (95% CI 96.6-99.5), 95.2% (95% CI 92.5-97.2) and 94.4% (95% CI 91.4-96.6) for microscopy, RDT and uRDT, respectively. The agreement between qPCR and uRDT was almost perfect (Kappa = 0.82). For parasite density (qPCR) below 100 p/µL, the sensitivity of RDT was 62% (95% CI 47.1-75.3) compared to 68% (95% CI 53.3-80.4) for uRDT. Between 100 and 200 p/µL, the sensitivity of RDT was higher, but still lower compared to uRDT: 89.4% (95% CI 66.8-98.7) for RDT versus 100% (95% CI 82.3-100) for uRDT. In both cases, microscopy was lower, with 20% (95% CI 10-33.7) and 47.3% (95% CI 24.4-71.1) respectively. CONCLUSIONS uRDT has the potential to improve malaria management in pregnant women as it has been found to be slightly more sensitive than RDT in the detection of malaria in pregnant women but the difference was not significant. Microscopy has a more limited value for the diagnosis of malaria during the pregnancy, because of its lower sensitivity.
Collapse
Affiliation(s)
- Japhet Kabalu Tshiongo
- Department of Tropical Medicine, University of Kinshasa (UNIKIN), Kinshasa, Democratic Republic of the Congo.
- Amsterdam University Medical Centres, Department of Medical Microbiology and Infection Prevention, Laboratory for Experimental Parasitology, Academic Medical Centres at the University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Institute for Infection and Immunity, Infectious Diseases Programme, Amsterdam, The Netherlands.
| | - Flory Luzolo
- Department of Tropical Medicine, University of Kinshasa (UNIKIN), Kinshasa, Democratic Republic of the Congo
| | - Melissa Kabena
- Department of Tropical Medicine, University of Kinshasa (UNIKIN), Kinshasa, Democratic Republic of the Congo
| | - Lise Kuseke
- Department of Tropical Medicine, University of Kinshasa (UNIKIN), Kinshasa, Democratic Republic of the Congo
| | - Moussa Djimde
- Amsterdam University Medical Centres, Department of Medical Microbiology and Infection Prevention, Laboratory for Experimental Parasitology, Academic Medical Centres at the University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases Programme, Amsterdam, The Netherlands
- Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Patrick Mitashi
- Department of Tropical Medicine, University of Kinshasa (UNIKIN), Kinshasa, Democratic Republic of the Congo
| | - Crispin Lumbala
- Clinton Health Access Initiative, Kinshasa, Democratic Republic of the Congo
- Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Kassoum Kayentao
- Malaria Research and Training Center (MRTC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Sandra Menting
- Amsterdam University Medical Centres, Department of Medical Microbiology and Infection Prevention, Laboratory for Experimental Parasitology, Academic Medical Centres at the University of Amsterdam, Amsterdam, The Netherlands
| | - Petra F Mens
- Amsterdam University Medical Centres, Department of Medical Microbiology and Infection Prevention, Laboratory for Experimental Parasitology, Academic Medical Centres at the University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases Programme, Amsterdam, The Netherlands
| | - Henk D F H Schallig
- Amsterdam University Medical Centres, Department of Medical Microbiology and Infection Prevention, Laboratory for Experimental Parasitology, Academic Medical Centres at the University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Infectious Diseases Programme, Amsterdam, The Netherlands
| | - Pascal Lutumba
- Department of Tropical Medicine, University of Kinshasa (UNIKIN), Kinshasa, Democratic Republic of the Congo
- Institut Supérieur Des Techniques Médicales de Kinshasa (ISTM-Kinshasa), Kinshasa, Democratic Republic of the Congo
| | - Halidou Tinto
- Institut de Recherche en Sciences de La Santé - Clinical Research Unit of Nanoro (IRSS-CRUN), Nanoro, Burkina Faso
| | - Hypolite Muhindo Mavoko
- Department of Tropical Medicine, University of Kinshasa (UNIKIN), Kinshasa, Democratic Republic of the Congo
| | - Vivi Maketa
- Department of Tropical Medicine, University of Kinshasa (UNIKIN), Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
4
|
Baraka V, Nhama A, Aide P, Bassat Q, David A, Gesase S, Gwasupika J, Hachizovu S, Makenga G, Ntizimira CR, Obunge O, Tshefu KA, Cousin M, Otsyula N, Pathan R, Risterucci C, Su G, Manyando C. Prescription patterns and compliance with World Health Organization recommendations for the management of uncomplicated and severe malaria: A prospective, real-world study in sub-Saharan Africa. Malar J 2023; 22:215. [PMID: 37491295 PMCID: PMC10367305 DOI: 10.1186/s12936-023-04650-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/18/2023] [Indexed: 07/27/2023] Open
Abstract
BACKGROUND This study aimed to evaluate the gap between guidelines and local clinical practice for diagnosis and treatment of uncomplicated and severe malaria, the patient characteristics, diagnostic approach, treatment, and compliance to standard guideline recommendations. METHODS This was a multicentre, observational study conducted between October 2020 and March 2021 in which patients of all ages with symptoms suggestive of malaria and who visited a healthcare facility were prospectively enrolled in six countries in sub-Saharan Africa (The Democratic Republic of the Congo, Mozambique, Nigeria, Rwanda, The United Republic of Tanzania, and Zambia). RESULTS Of 1001 enrolled patients, 735 (73.4%) patients had confirmed malaria (based on overall judgment by investigator) at baseline (uncomplicated malaria: 598 [81.4%] and severe malaria: 137 [18.6%]). Of the confirmed malaria patients, 533 (72.5%) were administered a malaria rapid diagnostic test. The median age of patients was 11 years (range: 2 weeks-91 years) with more patients coming from rural (44.9%) than urban (30.6%) or suburban areas (24.5%). At the community level, 57.8% of patients sought advice or received treatment for malaria and 56.9% of patients took one or more drugs for their illness before coming to the study site. In terms of early access to care, 44.1% of patients came to the study site for initial visit ≥ 48 h after symptom onset. In patients with uncomplicated malaria, the most prescribed treatments were artemisinin-based combination therapy (ACT; n = 564 [94.3%]), primarily using artemether-lumefantrine (82.3%), in line with the World Health Organization (WHO) treatment guidelines. In addition, these patients received antipyretics (85.6%) and antibiotics (42.0%). However, in those with severe malaria, only 66 (48.2%) patients received parenteral treatment followed by oral ACT as per WHO guidelines, whereas 62 (45.3%) received parenteral treatment only. After receiving ambulatory care, 88.6% of patients with uncomplicated malaria were discharged and 83.2% of patients with severe malaria were discharged after hospitalization. One patient with uncomplicated malaria having multiple co-morbidities and three patients with severe malaria died. CONCLUSIONS The findings of this study suggest that the prescribed treatment in most patients with uncomplicated malaria, but not of those with severe malaria, was in alignment with the WHO recommended guidelines.
Collapse
Affiliation(s)
- Vito Baraka
- National Institute for Medical Research (NIMR), Tanga Centre, Hospital Street, P.O Box 5004, Tanga, United Republic of Tanzania.
| | - Abel Nhama
- Instituto Nacional de Saúde (INS), Ministério da Saude, Maputo, Mozambique
- Centro de Investigação em Saúde de Manhiça, Manhica, Maputo Province, Mozambique
| | - Pedro Aide
- Instituto Nacional de Saúde (INS), Ministério da Saude, Maputo, Mozambique
- Centro de Investigação em Saúde de Manhiça, Manhica, Maputo Province, Mozambique
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça, Manhica, Maputo Province, Mozambique
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Agatha David
- Nigerian Institute of Medical Research (NIMR), Lagos, Nigeria
| | - Samwel Gesase
- National Institute for Medical Research (NIMR), Tanga Centre, Hospital Street, P.O Box 5004, Tanga, United Republic of Tanzania
| | | | - Sebastian Hachizovu
- Tropical Diseases Research Centre, Ndola, Zambia
- Ipafu Rural Health Centre Chingola, Chingola, Zambia
| | - Geofrey Makenga
- National Institute for Medical Research (NIMR), Tanga Centre, Hospital Street, P.O Box 5004, Tanga, United Republic of Tanzania
| | | | - Orikomaba Obunge
- Center for Malaria Research and Phytomedicine (CMRAP), University of Port Harcourt, Port Harcourt, Nigeria
| | - Kitoto Antoinette Tshefu
- The Hospital Center of Mont Amba Kinshasa, Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | | | | | | | - Guoqin Su
- Novartis Pharmaceuticals Corporation, East Hanover, NJ, USA
| | | |
Collapse
|
5
|
Okanda D, Ndwiga L, Osoti V, Achieng N, Wambua J, Ngetsa C, Lubell-Doughtie P, Shankar A, Bejon P, Ochola-Oyier LI. Low frequency of Plasmodium falciparum hrp2/3 deletions from symptomatic infections at a primary healthcare facility in Kilifi, Kenya. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1083114. [PMID: 38455911 PMCID: PMC10910971 DOI: 10.3389/fepid.2023.1083114] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/23/2023] [Indexed: 03/09/2024]
Abstract
There is a growing concern for malaria control in the Horn of Africa region due to the spread and rise in the frequency of Plasmodium falciparum Histidine-rich Protein (hrp) 2 and 3 deletions. Parasites containing these gene deletions escape detection by the major PfHRP2-based rapid diagnostic test. In this study, the presence of Pfhrp2/3 deletions was examined in uncomplicated malaria patients in Kilifi County, from a region of moderate-high malaria transmission. 345 samples were collected from the Pingilikani dispensary in 2019/2020 during routine malaria care for patients attending this primary health care facility. The Carestart™ RDT and microscopy were used to test for malaria. In addition, qPCR was used to confirm the presence of parasites. In total, 249 individuals tested positive for malaria by RDT, 242 by qPCR, and 170 by microscopy. 11 samples that were RDT-negative and microscopy positive and 25 samples that were qPCR-positive and RDT-negative were considered false negative tests and were examined further for Pfhrp2/3 deletions. Pfhrp2/3-negative PCR samples were further genotyped at the dihydrofolate reductase (Pfdhfr) gene which served to further confirm that parasite DNA was present in the samples. The 242 qPCR-positive samples (confirmed the presence of DNA) were also selected for Pfhrp2/3 genotyping. To determine the frequency of false negative results in low parasitemia samples, the RDT- and qPCR-negative samples were genotyped for Pfdhfr before testing for Pfhrp2/3. There were no Pfhrp2 and Pfhrp3 negative but positive for dhfr parasites in the 11 (RDT negative and microscopy positive) and 25 samples (qPCR-positive and RDT-negative). In the larger qPCR-positive sample set, only 5 samples (2.1%) were negative for both hrp2 and hrp3, but positive for dhfr. Of the 5 samples, there were 4 with more than 100 parasites/µl, suggesting true hrp2/3 deletions. These findings revealed that there is currently a low prevalence of Pfhrp2 and Pfhrp3 deletions in the health facility in Kilifi. However, routine monitoring in other primary health care facilities across the different malaria endemicities in Kenya is urgently required to ensure appropriate use of malaria RDTs.
Collapse
Affiliation(s)
- Dorcas Okanda
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Leonard Ndwiga
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Victor Osoti
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Nicole Achieng
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Juliana Wambua
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Caroline Ngetsa
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | | | - Anuraj Shankar
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Philip Bejon
- Biosciences Department, KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Nuffield Department of Medicine, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
6
|
Sabin S, Jones S, Patel D, Subramaniam G, Kelley J, Aidoo M, Talundzic E. Portable and cost-effective genetic detection and characterization of Plasmodium falciparum hrp2 using the MinION sequencer. Sci Rep 2023; 13:2893. [PMID: 36801925 PMCID: PMC9938884 DOI: 10.1038/s41598-022-26935-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/22/2022] [Indexed: 02/20/2023] Open
Abstract
The prevalence of Plasmodium falciparum hrp2 (pfhrp2)-deleted parasites threatens the efficacy of the most used and sensitive malaria rapid diagnostic tests and highlights the need for continued surveillance for this gene deletion. While PCR methods are adequate for determining pfhrp2 presence or absence, they offer a limited view of its genetic diversity. Here, we present a portable sequencing method using the MinION. Pfhrp2 amplicons were generated from individual samples, barcoded, and pooled for sequencing. To overcome potential crosstalk between barcodes, we implemented a coverage-based threshold for pfhrp2 deletion confirmation. Amino acid repeat types were then counted and visualized with custom Python scripts following de novo assembly. We evaluated this assay using well-characterized reference strains and 152 field isolates with and without pfhrp2 deletions, of which 38 were also sequenced on the PacBio platform to provide a standard for comparison. Of 152 field samples, 93 surpassed the positivity threshold, and of those samples, 62/93 had a dominant pfhrp2 repeat type. PacBio-sequenced samples with a dominant repeat-type profile from the MinION sequencing data matched the PacBio profile. This field-deployable assay can be used alone for surveilling pfhrp2 diversity or as a sequencing-based addition to the World Health Organization's existing deletion surveillance protocol.
Collapse
Affiliation(s)
- Susanna Sabin
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA.
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA.
| | - Sophie Jones
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Williams Consulting, Catonsville, MD, USA
| | - Dhruviben Patel
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Williams Consulting, Catonsville, MD, USA
| | - Gireesh Subramaniam
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Julia Kelley
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Michael Aidoo
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Eldin Talundzic
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
7
|
Martiáñez-Vendrell X, Skjefte M, Sikka R, Gupta H. Factors Affecting the Performance of HRP2-Based Malaria Rapid Diagnostic Tests. Trop Med Infect Dis 2022; 7:265. [PMID: 36288006 PMCID: PMC9611031 DOI: 10.3390/tropicalmed7100265] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The recent COVID-19 pandemic has profoundly impacted global malaria elimination programs, resulting in a sharp increase in malaria morbidity and mortality. To reduce this impact, unmet needs in malaria diagnostics must be addressed while resuming malaria elimination activities. Rapid diagnostic tests (RDTs), the unsung hero in malaria diagnosis, work to eliminate the prevalence of Plasmodium falciparum malaria through their efficient, cost-effective, and user-friendly qualities in detecting the antigen HRP2 (histidine-rich protein 2), among other proteins. However, the testing mechanism and management of malaria with RDTs presents a variety of limitations. This paper discusses the numerous factors (including parasitic, host, and environmental) that limit the performance of RDTs. Additionally, the paper explores outside factors that can hinder RDT performance. By understanding these factors that affect the performance of HRP2-based RDTs in the field, researchers can work toward creating and implementing more effective and accurate HRP2-based diagnostic tools. Further research is required to understand the extent of these factors, as the rapidly changing interplay between parasite and host directly hinders the effectiveness of the tool.
Collapse
Affiliation(s)
- Xavier Martiáñez-Vendrell
- Molecular Virology Laboratory, Department of Medical Microbiology, LUMC Center for Infectious Diseases (LU-CID), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands or
| | - Malia Skjefte
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, UP, India
| | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, UP, India
| |
Collapse
|
8
|
Beshir KB, Parr JB, Cunningham J, Cheng Q, Rogier E. Screening strategies and laboratory assays to support Plasmodium falciparum histidine-rich protein deletion surveillance: where we are and what is needed. Malar J 2022; 21:201. [PMID: 35751070 PMCID: PMC9233320 DOI: 10.1186/s12936-022-04226-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/17/2022] [Indexed: 11/10/2022] Open
Abstract
Rapid diagnostic tests (RDTs) detecting Plasmodium falciparum histidine-rich protein 2 (HRP2) have been an important tool for malaria diagnosis, especially in resource-limited settings lacking quality microscopy. Plasmodium falciparum parasites with deletion of the pfhrp2 gene encoding this antigen have now been identified in dozens of countries across Asia, Africa, and South America, with new reports revealing a high prevalence of deletions in some selected regions. To determine whether HRP2-based RDTs are appropriate for continued use in a locality, focused surveys and/or surveillance activities of the endemic P. falciparum population are needed. Various survey and laboratory methods have been used to determine parasite HRP2 phenotype and pfhrp2 genotype, and the data collected by these different methods need to be interpreted in the appropriate context of survey and assay utilized. Expression of the HRP2 antigen can be evaluated using point-of-care RDTs or laboratory-based immunoassays, but confirmation of a deletion (or mutation) of pfhrp2 requires more intensive laboratory molecular assays, and new tools and strategies for rigorous but practical data collection are particularly needed for large surveys. Because malaria diagnostic strategies are typically developed at the national level, nationally representative surveys and/or surveillance that encompass broad geographical areas and large populations may be required. Here is discussed contemporary assays for the phenotypic and genotypic evaluation of P. falciparum HRP2 status, consider their strengths and weaknesses, and highlight key concepts relevant to timely and resource-conscious workflows required for efficient diagnostic policy decision making.
Collapse
Affiliation(s)
- Khalid B Beshir
- Faculty of Infectious Diseases, London School of Hygiene and Tropical Diseases, Keppel Street, London, WC1E 7HT, UK
| | - Jonathan B Parr
- Division of Infectious Diseases and Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Qin Cheng
- Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia.,QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Eric Rogier
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, 30029, USA.
| |
Collapse
|
9
|
McCaffery JN, Huber CS, Samai HM, Rogier E. Low Prevalence of Deletions of the pfhrp2 and pfhrp3 Genes in Plasmodium falciparum Parasites in Freetown, Sierra Leone in 2015. Am J Trop Med Hyg 2022; 106:1667-1669. [PMID: 35895430 PMCID: PMC9209925 DOI: 10.4269/ajtmh.22-0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/06/2022] [Indexed: 09/01/2024] Open
Abstract
Sierra Leone relies heavily on histidine-rich protein 2-based diagnostics for malaria because of the high transmission of Plasmodium falciparum. During the 2015 recombinant vesicular stomatitis virus (VSV)-Zaire Ebola virus envelope glycoprotein (GP) vaccine trial, 77 participants with asymptomatic Plasmodium infection were enrolled, with all but four having P. falciparum malaria. Of the 73 participants with P. falciparum malaria, one infection (1 of 73, 1.4%; 95% CI, 0.03-7.4) showed P. falciparum with a pfhrp3 single deletion, and two P. falciparum infections (2 of 73, 2.7%; 95% CI, 0.03-9.6) showed pfhrp2/pfhrp3 dual deletions. This study shows evidence of pfhrp2- and pfhrp3-deleted parasites in Freetown, Sierra Leone. Additional studies for more precise estimates of prevalence are warranted.
Collapse
Affiliation(s)
- Jessica N. McCaffery
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
- Oak Ridge Associated Universities, Oak Ridge, Tennessee
| | - Curtis S. Huber
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Hindolo M. Samai
- College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone
| | - Eric Rogier
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|