1
|
Zhou S, Wang X, Huang Y, Liu Y, Zheng Y, Chu P, Zhu L, Xu X. Bisphenol A induces lipid metabolism disorder and impairs hepatopancreas of Sesarmops sinensis. MARINE POLLUTION BULLETIN 2024; 208:117058. [PMID: 39357365 DOI: 10.1016/j.marpolbul.2024.117058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/20/2024] [Accepted: 09/25/2024] [Indexed: 10/04/2024]
Abstract
Bisphenol A (BPA) is a chemical that disrupts the endocrine system and may have negative implications on the lipid metabolism of organisms. To ascertain BPA implications on lipid metabolism in the hepatopancreas of Sesarmops sinensis, we exposed S. sinensis to different concentrations of BPA for 14 days. The outcomes manifested that BPA may stimulate hepatopancreas injury and lipid deposition in the hepatopancreas of S. sinensis and lead to the increase of hepatosomatic index (HSI). Transcriptome analysis showed that lipid metabolism-related pathways were significantly enriched in KEGG pathways. BPA exposure also caused disorders in lipid metabolism by altering fatty acid composition and lipid metabolites. The up-regulation of lipid synthesis genes and the alteration of lipid transport genes may be important reasons for the disorder of lipid metabolism. Furthermore, these outcomes provide a fresh point of reference for comprehending the ecotoxicological impacts of BPA on aquatic organisms.
Collapse
Affiliation(s)
- Shangjie Zhou
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Xiaotian Wang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yutong Huang
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yan Liu
- School of Ocean, Yantai University, Yantai, Shandong 264000, China
| | - Yao Zheng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu 214081, China
| | - Pengfei Chu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225000, China
| | - Long Zhu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| | - Xinghong Xu
- School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China; Marine Resources Development Institute of Jiangsu, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China.
| |
Collapse
|
2
|
Busnelli M, Colombo A, Manzini S, Franchi E, Chiesa G. The transcriptome profiling of diseased mouse aortas discloses a dysregulation of the sympathetic neurotransmission in atherosclerosis. Heliyon 2024; 10:e31852. [PMID: 38841495 PMCID: PMC11152669 DOI: 10.1016/j.heliyon.2024.e31852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/22/2024] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
Previous reports suggest an association between the development of atherosclerosis and alterations in the aortic sympathetic nervous system, but there is no agreement on whether atherosclerotic plaques are accompanied by increased or decreased sympathetic innervation in the arterial wall. In the present study, the aortic transcriptional profile of mice with different predisposition to atherosclerosis was investigated to clarify how the expression of genes involved in sympathetic neurotransmission varied. Eight-week-old C57Bl/6J control mice, Apoe knockout mice (EKO), EKO mice overexpressing human apoA-I (EKO/hA-I) and double Apoe/Apoa1 knockout mice (DKO) mice were fed either a standard rodent diet or a Western-type diet for 22 weeks. Atherosclerosis was quantified, and the aortic transcriptome was analyzed by RNAseq. Western-type diet administration deeply modified the aortic transcriptome. In the genetically modified atherosclerosis-prone mouse lines, an upregulated expression of genes associated with the immunomodulatory response was observed, paralleled by a downregulated expression of the genes related to sympathetic nervous system. Functional enrichment analysis indicated that the presence of advanced atherosclerosis was accompanied by reduced neuronal generation, modulation of synapse chemical transmission, and catecholamine biosynthesis, supporting a relationship between atherosclerosis, dyslipidemia, and sympathetic neurotransmission.
Collapse
Affiliation(s)
| | | | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Italy
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, Italy
| |
Collapse
|
3
|
Oleari R, Lettieri A, Manzini S, Paganoni A, André V, Grazioli P, Busnelli M, Duminuco P, Vitobello A, Philippe C, Bizaoui V, Storr HL, Amoruso F, Memi F, Vezzoli V, Massa V, Scheiffele P, Howard SR, Cariboni A. Autism-linked NLGN3 is a key regulator of gonadotropin-releasing hormone deficiency. Dis Model Mech 2023; 16:dmm049996. [PMID: 36810932 PMCID: PMC10110398 DOI: 10.1242/dmm.049996] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) deficiency (GD) is a disorder characterized by absent or delayed puberty, with largely unknown genetic causes. The purpose of this study was to obtain and exploit gene expression profiles of GnRH neurons during development to unveil novel biological mechanisms and genetic determinants underlying GD. Here, we combined bioinformatic analyses of immortalized and primary embryonic GnRH neuron transcriptomes with exome sequencing from GD patients to identify candidate genes implicated in the pathogenesis of GD. Among differentially expressed and filtered transcripts, we found loss-of-function (LoF) variants of the autism-linked neuroligin 3 (NLGN3) gene in two unrelated patients co-presenting with GD and neurodevelopmental traits. We demonstrated that NLGN3 is upregulated in maturing GnRH neurons and that NLGN3 wild-type, but not mutant, protein promotes neuritogenesis when overexpressed in developing GnRH cells. Our data represent proof of principle that this complementary approach can identify new candidate GD genes and demonstrate that LoF NLGN3 variants can contribute to GD. This novel genotype-phenotype correlation implies common genetic mechanisms underlying neurodevelopmental disorders, such as GD and autistic spectrum disorder.
Collapse
Affiliation(s)
- Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Antonella Lettieri
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan 20142, Italy
- Department of Health Sciences, University of Milan, Milan 20142, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Alyssa Paganoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Valentina André
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Paolo Grazioli
- Department of Health Sciences, University of Milan, Milan 20142, Italy
| | - Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Paolo Duminuco
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Cusano Milanino 20095, Italy
| | - Antonio Vitobello
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire (FHU) TRANSLAD, CHU Dijon Bourgogne, Dijon 21079, France
- INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon 21070, France
| | - Christophe Philippe
- Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, Fédération Hospitalo-Universitaire (FHU) TRANSLAD, CHU Dijon Bourgogne, Dijon 21079, France
- INSERM UMR 1231 GAD (Génétique des Anomalies du Développement), Université de Bourgogne, Dijon 21070, France
| | - Varoona Bizaoui
- Genetics and Neurodevelopment, Centre Hospitalier de l'Estran, Pontorson 50170, France
| | - Helen L. Storr
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Royal London Children's Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Federica Amoruso
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| | - Fani Memi
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, Cambridge CB2 0AW, UK
| | - Valeria Vezzoli
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Cusano Milanino 20095, Italy
| | - Valentina Massa
- CRC Aldo Ravelli for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Milan 20142, Italy
- Department of Health Sciences, University of Milan, Milan 20142, Italy
| | | | - Sasha R. Howard
- Centre for Endocrinology William Harvey Research Institute Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Royal London Children's Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Anna Cariboni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan 20133, Italy
| |
Collapse
|
4
|
Sherman BT, Hao M, Qiu J, Jiao X, Baseler MW, Lane HC, Imamichi T, Chang W. DAVID: a web server for functional enrichment analysis and functional annotation of gene lists (2021 update). Nucleic Acids Res 2022; 50:W216-W221. [PMID: 35325185 PMCID: PMC9252805 DOI: 10.1093/nar/gkac194] [Citation(s) in RCA: 2104] [Impact Index Per Article: 1052.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/11/2022] [Indexed: 11/14/2022] Open
Abstract
DAVID is a popular bioinformatics resource system including a web server and web service for functional annotation and enrichment analyses of gene lists. It consists of a comprehensive knowledgebase and a set of functional analysis tools. Here, we report all updates made in 2021. The DAVID Gene system was rebuilt to gain coverage of more organisms, which increased the taxonomy coverage from 17 399 to 55 464. All existing annotation types have been updated, if available, based on the new DAVID Gene system. Compared with the last version, the number of gene-term records for most annotation types within the updated Knowledgebase have significantly increased. Moreover, we have incorporated new annotations in the Knowledgebase including small molecule-gene interactions from PubChem, drug-gene interactions from DrugBank, tissue expression information from the Human Protein Atlas, disease information from DisGeNET, and pathways from WikiPathways and PathBank. Eight of ten subgroups split from Uniprot Keyword annotation were assigned to specific types. Finally, we added a species parameter for uploading a list of gene symbols to minimize the ambiguity between species, which increases the efficiency of the list upload and eliminates confusion for users. These current updates have significantly expanded the Knowledgebase and enhanced the discovery power of DAVID.
Collapse
Affiliation(s)
- Brad T Sherman
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ming Hao
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Ju Qiu
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xiaoli Jiao
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Michael W Baseler
- Clinical Services Program, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD21702, USA
| | - H Clifford Lane
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tomozumi Imamichi
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Weizhong Chang
- Laboratory of Human Retrovirology and Immunoinformatics, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| |
Collapse
|
5
|
Busnelli M, Manzini S, Colombo A, Franchi E, Bonacina F, Chiara M, Arnaboldi F, Donetti E, Ambrogi F, Oleari R, Lettieri A, Horner D, Scanziani E, Norata GD, Chiesa G. Lack of ApoA-I in ApoEKO Mice Causes Skin Xanthomas, Worsening of Inflammation, and Increased Coronary Atherosclerosis in the Absence of Hyperlipidemia. Arterioscler Thromb Vasc Biol 2022; 42:839-856. [PMID: 35587694 PMCID: PMC9205301 DOI: 10.1161/atvbaha.122.317790] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background: HDL (high-density lipoprotein) and its major protein component, apoA-I (apolipoprotein A-I), play a unique role in cholesterol homeostasis and immunity. ApoA-I deficiency in hyperlipidemic, atheroprone mice was shown to drive cholesterol accumulation and inflammatory cell activation/proliferation. The present study was aimed at investigating the impact of apoA-I deficiency on lipid deposition and local/systemic inflammation in normolipidemic conditions. Methods: ApoE deficient mice, apoE/apoA-I double deficient (DKO) mice, DKO mice overexpressing human apoA-I, and C57Bl/6J control mice were fed normal laboratory diet until 30 weeks of age. Plasma lipids were quantified, atherosclerosis development at the aortic sinus and coronary arteries was measured, skin ultrastructure was evaluated by electron microscopy. Blood and lymphoid organs were characterized through histological, immunocytofluorimetric, and whole transcriptome analyses. Results: DKO were characterized by almost complete HDL deficiency and by plasma total cholesterol levels comparable to control mice. Only DKO showed xanthoma formation and severe inflammation in the skin-draining lymph nodes, whose transcriptome analysis revealed a dramatic impairment in energy metabolism and fatty acid oxidation pathways. An increased presence of CD4+ T effector memory cells was detected in blood, spleen, and skin-draining lymph nodes of DKO. A worsening of atherosclerosis at the aortic sinus and coronary arteries was also observed in DKO versus apoE deficient. Human apoA-I overexpression in the DKO background was able to rescue the skin phenotype and halt atherosclerosis development. Conclusions: HDL deficiency, in the absence of hyperlipidemia, is associated with severe alterations of skin morphology, aortic and coronary atherosclerosis, local and systemic inflammation.
Collapse
Affiliation(s)
- Marco Busnelli
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Stefano Manzini
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Alice Colombo
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Elsa Franchi
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Fabrizia Bonacina
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Matteo Chiara
- Department of Biosciences (M.C., D.H.), Università degli Studi di Milano, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy (M.C., D.H.)
| | - Francesca Arnaboldi
- Department of Biomedical Sciences for Health (F. Arnaboldi, E.D.), Università degli Studi di Milano, Italy
| | - Elena Donetti
- Department of Biomedical Sciences for Health (F. Arnaboldi, E.D.), Università degli Studi di Milano, Italy
| | - Federico Ambrogi
- Department of Clinical Sciences and Community Health (F. Ambrogi), Università degli Studi di Milano, Italy
| | - Roberto Oleari
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - Antonella Lettieri
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| | - David Horner
- Department of Biosciences (M.C., D.H.), Università degli Studi di Milano, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Bari, Italy (M.C., D.H.)
| | - Eugenio Scanziani
- Department of Veterinary Medicine (E.S.), Università degli Studi di Milano, Italy.,Mouse and Animal Pathology Laboratory (MAPLab), Fondazione UniMi, Milan, Italy (E.S.)
| | - Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy.,Centro per lo Studio dell'Aterosclerosi, Bassini Hospital, Cinisello B, Milan, Italy (G.D.N.)
| | - Giulia Chiesa
- Department of Pharmacological and Biomolecular Sciences (M.B., S.M., A.C., E.F., F.B., R.O., A.L., G.D.N., G.C.), Università degli Studi di Milano, Italy
| |
Collapse
|
6
|
Rajczewski AT, Jagtap PD, Griffin TJ. An overview of technologies for MS-based proteomics-centric multi-omics. Expert Rev Proteomics 2022; 19:165-181. [PMID: 35466851 PMCID: PMC9613604 DOI: 10.1080/14789450.2022.2070476] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Mass spectrometry-based proteomics reveals dynamic molecular signatures underlying phenotypes reflecting normal and perturbed conditions in living systems. Although valuable on its own, the proteome has only one level of moleclar information, with the genome, epigenome, transcriptome, and metabolome, all providing complementary information. Multi-omic analysis integrating information from one or more of these other domains with proteomic information provides a more complete picture of molecular contributors to dynamic biological systems. AREAS COVERED Here, we discuss the improvements to mass spectrometry-based technologies, focused on peptide-based, bottom-up approaches that have enabled deep, quantitative characterization of complex proteomes. These advances are facilitating the integration of proteomics data with other 'omic information, providing a more complete picture of living systems. We also describe the current state of bioinformatics software and approaches for integrating proteomics and other 'omics data, critical for enabling new discoveries driven by multi-omics. EXPERT COMMENTARY Multi-omics, centered on the integration of proteomics information with other 'omic information, has tremendous promise for biological and biomedical studies. Continued advances in approaches for generating deep, reliable proteomic data and bioinformatics tools aimed at integrating data across 'omic domains will ensure the discoveries offered by these multi-omic studies continue to increase.
Collapse
Affiliation(s)
- Andrew T. Rajczewski
- Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA
| | - Pratik D. Jagtap
- Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA,Coauthor, Research Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA
| | - Timothy J. Griffin
- Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA,Department of Biochemistry, Molecular and Cell Biology Building, University of Minnesota, 420 Washington Ave SE 7-129, Minneapolis, MN, 55455, USA
| |
Collapse
|