1
|
Li Y, Xi Y, Wang H, Sun A, Wang L, Deng X, Chen Z, Fan Y. Development and validation of a mathematical model for evaluating shear-induced damage of von Willebrand factor. Comput Biol Med 2023; 164:107379. [PMID: 37597407 DOI: 10.1016/j.compbiomed.2023.107379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
PURPOSE To develop a mathematical model for predicting shear-induced von Willebrand factor (vWF) function modification which can be used to guide ventricular assist devices (VADs) design, and evaluate the damage of high molecular weight multimers (HMWM)-vWF in VAD patients for reducing clinical complications. METHODS Mathematical models were constructed based on three morphological variations (globular vWF, unfolded vWF and degraded vWF) of vWF under shear stress conditions, in which parameters were obtained from previous studies or fitted by experimental data. Different clinical support modes (pediatric vs. adult mode), different VAD operating states (pulsation vs. constant mode) and different clinical VADs (HeartMate II, HeartWare and CentriMag) were utilized to analyze shear-induced damage of HMWM-vWF based on our vWF model. The accuracy and feasibility of the models were evaluated using various experimental and clinical cases, and the biomechanical mechanisms of HMWM-vWF degradation induced by VADs were further explained. RESULTS The mathematical model developed in this study predicted VAD-induced HMWM-vWF degradation with high accuracy (correlation with experimental data r2 > 0.99). The numerical results showed that VAD in the pediatric mode resulted in more HMWM-vWF degradation per unit time and per unit flow rate than in the adult mode. However, the total degradation of HMWM-vWF is less in the pediatric mode than in the adult mode because the pediatric mode has fewer times of blood circulation than the adult mode in the same amount of time. The ratio of HMWM-vWF degradation was lower in the pulsation mode than in the constant mode. This is due to the increased flushing of VADs in the pulsation mode, which avoids prolonged stagnation of blood in high shear regions. This study also found that the design feature, rotor size and volume of the VADs, and the superimposed regions of high shear stress and long residence time inside VADs affect the degradation of HMWM-vWF. The axial flow VADs (HeartMate II) showed higher degradation of HMWM-vWF compared to centrifugal VADs (HeartWare and CentriMag). Compared to fully magnetically suspended VADs (CentriMag), hydrodynamic suspended VADs (HeartWare) produced extremely high degradation of HWMW-vWF in its narrow hydrodynamic clearance. Finally, the study used a mathematical model of HMWM-vWF degradation to interpret the clinical statistics from a biomechanical perspective and found that minimizing the rotating speed of VADs within reasonable limits helps to reduce HWMW-vWF degradation. All predicted conclusions are supported by the experimental and clinical data. CONCLUSION This study provides a validated mathematical model to assess the shear-induced degradation of HMWM-vWF, which can help to evaluate the damage of HMWM-vWF in patients implanted with VADs for reducing clinical complications, and to guide the optimization of VADs for improving hemocompatibility.
Collapse
Affiliation(s)
- Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China.
| |
Collapse
|
2
|
Zaky M, Kawabori M. Anticoagulation Strategy, the Achilles' Heel While on Prolonged Impella 5.5 Support. ASAIO J 2023; 69:e285. [PMID: 36881616 DOI: 10.1097/mat.0000000000001908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Affiliation(s)
- Mina Zaky
- Cardiac Surgery, Cardiovascular Center Tufts Medical Center Boston, Massachusetts
| | - Masashi Kawabori
- Cardiac Surgery, Cardiovascular Center, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
3
|
Munoz Tello C, Jamil D, Tran HHV, Mansoor M, Butt SR, Satnarine T, Ratna P, Sarker A, Ramesh AS, Mohammed L. The Therapeutic Use of Impella Device in Cardiogenic Shock: A Systematic Review. Cureus 2022; 14:e30045. [PMID: 36381689 PMCID: PMC9637443 DOI: 10.7759/cureus.30045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023] Open
Abstract
Impella (Abiomed, Danvers, MA) devices nowadays have been linked to cardiogenic shock (CS) due to the importance of their use as therapeutic instruments. This study aims to review pathophysiologic mechanisms of cardiogenic shock and the implementation of Impella to overcome this condition. To investigate several different types of studies and analyze the use of Impella device in cardiogenic shock and the outcomes of heart malfunctioning and determine its positive and negative impacts as a therapeutic tool in cardiac ischemia and use as a resource in critical patients, we conducted a systematic review through different databases (PubMed, ScienceDirect, and Google Scholar) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist and used the Medical Subjects Heading (MeSH) search strategy to obtain significant articles. We found 883 papers in total, and after removing duplicates, applying inclusion/exclusion criteria, and finding the most significant information, we ended up with 30 articles that were reviewed containing information about the impact of Impella device in cardiogenic shock in different locations. The study strongly concludes that Impella device in the setting of cardiogenic shock has more advantages than disadvantages in terms of outcomes and complications as a non-pharmacologic tool. Improvements in left ventricular ejection fraction and signs and symptoms of cardiogenic shock criteria were determinants. Nevertheless, complications during the implementation and use of the device were established; in this manner, the evaluation and treatment of each patient separately are imperative. Consequently, more studies on this relevant topic are needed.
Collapse
Affiliation(s)
- Carlos Munoz Tello
- General Medicine, Universidad Católica de Cuenca, Cuenca, ECU
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Dawood Jamil
- Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Hadrian Hoang-Vu Tran
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Mafaz Mansoor
- General Practice, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Samia Rauf Butt
- General Practice, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | | | - Pranuthi Ratna
- Medicine, Kamineni Academy of Medical Sciences and Research Centre (KAMSRC), Hyderabad, IND
| | - Aditi Sarker
- General Practice, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Adarsh Srinivas Ramesh
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Lubna Mohammed
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
4
|
Fabbro M, Patel PA, Henderson RA, Bolliger D, Tanaka KA, Mazzeffi MA. Coagulation and Transfusion Updates From 2021. J Cardiothorac Vasc Anesth 2022; 36:3447-3458. [PMID: 35750604 PMCID: PMC8986228 DOI: 10.1053/j.jvca.2022.03.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022]
Abstract
2021 and the COVID 19 pandemic have brought unprecedented blood shortages worldwide. These deficits have propelled national efforts to reduce blood usage, including limiting elective services and accelerating Patient Blood Management (PBM) initiatives. A host of research dedicated to blood usage and management within cardiac surgery has continued to emerge. The intent of this review is to highlight this past year's research pertaining to PBM and COVID-19-related coagulation changes.
Collapse
|