1
|
Ohsawa M, Nishi H, Emi M, Yoshikawa T, Hamai Y, Ibuki Y, Kurokawa T, Hirohata R, Kitasaki N, Kawada-Matsuo M, Komatsuzawa H, Kawaguchi H, Okada M. Impact of Fusobacterium nucleatum in the treatment of cancer, including radiotherapy and its future potential in esophageal cancer. JOURNAL OF RADIATION RESEARCH 2024; 65:i126-i134. [PMID: 39679879 DOI: 10.1093/jrr/rrae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 05/09/2024] [Indexed: 12/17/2024]
Abstract
Despite advances in multimodality therapy, including surgery, chemotherapy, radiation therapy and chemoradiation, the fatality rate for esophageal cancer remains high. Specifically, Fusobacterium nucleatum, due to its aggregation capacity, has shown a tendency to form biofilms. The biofilm-forming capabilities of microbial communities are of utmost importance in the context of cancer treatment, as they have been shown to drive significant losses in the efficaciousness of various cancer treatments. Therefore, elucidating the dynamics of F. nucleatum will be important for the development of effective treatments for esophageal cancer. Therefore, this review summarizes the current knowledge of F. nucleatum, its involvement in cancer and its impact on chemotherapy and radiation therapy. In conclusion, further research on the role of F. nucleatum is essential for the continued advancement of the treatment of esophageal cancer and patient care.
Collapse
Affiliation(s)
- Manato Ohsawa
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Hiromi Nishi
- Department of General Dentistry, Hiroshima University Hospital, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Manabu Emi
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Toru Yoshikawa
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Yoichi Hamai
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Yuta Ibuki
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Tomoaki Kurokawa
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Ryosuke Hirohata
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Nao Kitasaki
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Miki Kawada-Matsuo
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Hitoshi Komatsuzawa
- Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Hiroyuki Kawaguchi
- Department of General Dentistry, Hiroshima University Hospital, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| | - Morihito Okada
- Department of Surgical Oncology, Hiroshima University, 1-2-3-Kasumi, Minami-ku, Hiroshima City, Hiroshima 734-0037, Japan
| |
Collapse
|
2
|
Kato Y, Takamura M, Wada K, Usuda H, Abe S, Mitaki S, Nagai A. Fusobacterium in oral bacterial flora relates with asymptomatic brain lesions. Heliyon 2024; 10:e39277. [PMID: 39640678 PMCID: PMC11620239 DOI: 10.1016/j.heliyon.2024.e39277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/02/2024] [Accepted: 10/10/2024] [Indexed: 12/07/2024] Open
Abstract
Background Specific bacterial species in the oral cavity contribute to cerebral hemorrhage and microbleeds. The relationship between oral bacterial flora and asymptomatic brain lesions (ABL) remains unclear. This study aimed to investigate this relationship in a healthy Japanese cohort. Methods This cross-sectional study included participants who underwent health examinations at our Brain Dock facility between October 2020 and March 2021. The oral microbiomes of participants with and without ABL were compared using magnetic resonance imaging. To extensively assess the oral bacterial flora, the differences in genes and species compositions between the ABL and noBL (without brain lesions) groups were statistically evaluated via extensive analysis using 16S rRNA gene-based cloning. Results Among 143 patients, 48.3 % had ABL. In the univariate analyses, Fusobacterium and Leptotrichia were associated with ABL (P = 0.017 and P < 0.001, respectively). In the adjusted models, Fusobacterium was associated with ABL (P = 0.006). In an intergroup comparison of seven Fusobacterium species, F. nucleatum, F. naviforme, and F. canifelinum were associated with ABL (P < 0.001, P = 0.002, P < 0.001). Conclusions The elevation of Fusobacterium in the ABL indicates the importance of the microbiome in the oral cavity as a factor in inducing cerebral small-vessel disease in healthy individuals, whose preventive approach might have an impact on therapeutic applications.
Collapse
Affiliation(s)
- Yoshie Kato
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| | - Masahiro Takamura
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| | - Koichiro Wada
- Department of Pharmacology, Shimane University Faculty of Medicine, Japan
| | - Haruki Usuda
- Department of Pharmacology, Shimane University Faculty of Medicine, Japan
| | - Satoshi Abe
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| | - Shingo Mitaki
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| | - Atsushi Nagai
- Department of Neurology, Shimane University Faculty of Medicine, Japan
| |
Collapse
|
3
|
Yakar N, Unlu O, Cen L, Hasturk H, Chen T, Shi W, He X, Kantarci A. Targeted elimination of Fusobacterium nucleatum alleviates periodontitis. J Oral Microbiol 2024; 16:2388900. [PMID: 39139835 PMCID: PMC11321114 DOI: 10.1080/20002297.2024.2388900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
Background Fusobacterium nucleatum, a pathobiont in periodontal disease, contributes to alveolar bone destruction. We assessed the efficacy of a new targeted antimicrobial, FP-100, in eradicating F. nucleatum from the oral microbial community in vitro and in vivo and evaluated its effectiveness in reducing bone loss in a mouse periodontitis model. Methods A multispecies bacterial community was cultured and treated with two concentrations of FP-100 over two days. Microbial profiles were examined at 24-h intervals using 16S rRNA sequencing. A ligature-induced periodontitis mouse model was employed to test FP-100 in vivo. Results FP-100 significantly reduced Fusobacterium spp. within the in vitro community (p < 0.05) without altering microbial diversity at a 2 μM concentration. In mice, cultivable F. nucleatum was undetectable in FP-100-treated ligatures but persistent in controls. Beta diversity plots showed distinct microbial structures between treated and control mice. Alveolar bone loss was significantly reduced in the FP-100 group (p = 0.018), with concurrent decreases in gingival IL-1β and TNF-α expression (p = 0.052 and 0.018, respectively). Conclusion FP-100 effectively eliminates F. nucleatum from oral microbiota and significantly reduces bone loss in a mouse periodontitis model, demonstrating its potential as a targeted therapeutic agent for periodontal disease.
Collapse
Affiliation(s)
- Nil Yakar
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
- Faculty of Science, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| | - Ozge Unlu
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
- Faculty of Medicine, Department of Medical Microbiology, Istanbul Atlas University, Istanbul, Turkey
| | - Lujia Cen
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Hatice Hasturk
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Tsute Chen
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Wenyuan Shi
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Xuesong He
- Department of Microbiology, The ADA Forsyth Institute, Cambridge, MA, USA
| | - Alpdogan Kantarci
- Immunology and Infectious Diseases, The ADA Forsyth Institute, Cambridge, MA, USA
- Department of Oral Microbiology and Infection, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
4
|
Fan JC, Gan JH, Lu H. The relationship between periodontal disease and gastric cancer: A bidirectional Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38490. [PMID: 38875422 PMCID: PMC11175918 DOI: 10.1097/md.0000000000038490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/11/2024] [Accepted: 05/16/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND Previous observational studies have suggested a possible association between periodontal disease and gastric cancer (GC); however, a causal relationship has not yet been established. This study aimed to explore the causal relationship between the 2 through a 2-sample bidirectional Mendelian randomization (MR) study. METHODS Genome-wide association studies (GWAS) summary statistics were obtained from publicly available GWAS and relevant databases. Two-sample bidirectional MR analysis was conducted to investigate the causal relationship between periodontal disease and GC using the inverse-variance weighted (IVW) method selected as the primary analytical approach. Cochran Q test, MR-PRESSO, MR-pleiotropy, and leave-one-out analyses were performed to assess heterogeneity, pleiotropy, and sensitivity. RESULTS In European ancestry, IVW analysis revealed no causal relationship between periodontal disease and GC (OR = 1.873; 95% CI [4.788e-10, 7.323e + 09]; P = .956), or between loose teeth and GC (OR = 1.064; 95% CI [0.708, 1.598]; P = .765). In East Asian ancestry, there was no causal relationship between periodontitis and GC according to IVW (OR = 0.948; 95% CI [0.886, 1.015]; P = .126). Conversely, according to the results of the IVW analysis, there was no causal relationship between GC and periodontal disease, regardless of European or East Asian ancestry. Furthermore, there was no heterogeneity or pleiotropy in the causal relationships between these variables (all P > .05), suggesting a certain level of reliability in our results. CONCLUSION Within the limitations of this MR study, we found no mutual causal relationship between periodontal disease and GC. This finding can prevent overtreatment by clinical physicians and alleviate the psychological burden on patients.
Collapse
Affiliation(s)
- Ji-Chang Fan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Jin-Heng Gan
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Hao Lu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
5
|
Sato S, Chinda D, Iino C, Sawada K, Mikami T, Nakaji S, Sakuraba H, Fukuda S. A Cohort Study of the Influence of the 12-Component Modified Japanese Diet Index on Oral and Gut Microbiota in the Japanese General Population. Nutrients 2024; 16:524. [PMID: 38398848 PMCID: PMC10893011 DOI: 10.3390/nu16040524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
The Japanese diet is a healthy dietary pattern, and the oral or gut microbiota have been identified as the main factors underlying the beneficial effects of the Japanese diet. However, epidemiological studies on Japanese dietary patterns calculated from daily eating habits in the general population yielded inconsistent findings. This study aimed to determine the association between the 12-component modified Japanese Diet Index (mJDI12) and the oral and gut microbiota in the general population of a rural area in Japan. After propensity-score matching, 396 participants (198 each in the low and high mJDI12 groups) were picked out. One year after the follow up survey, we reclassified the subjects and compared the low and high mJDI12 groups again. Participants with a high mJDI12 had a higher relative abundance of butyric acid-producing bacteria in their gut microbiota. Moreover, the significantly higher dietary fiber intake in the high mJDI12 group suggested that the high intake of dietary fiber contributed to an increase in butyric acid-producing bacteria in the gut. In contrast, in individuals with a high mJDI12, only Allpprevotella was decreased in the oral microbiota. Thus, the Japanese dietary pattern can have beneficial effects by improving the oral and gut microbiota.
Collapse
Affiliation(s)
- Satoshi Sato
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (S.S.); (C.I.); (H.S.); (S.F.)
| | - Daisuke Chinda
- Division of Endoscopy, Hirosaki University Hospital, Hirosaki 036-8562, Japan
| | - Chikara Iino
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (S.S.); (C.I.); (H.S.); (S.F.)
| | - Kaori Sawada
- Center of Healthy Aging Innovation, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (K.S.); (T.M.); (S.N.)
| | - Tatsuya Mikami
- Center of Healthy Aging Innovation, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (K.S.); (T.M.); (S.N.)
| | - Shigeyuki Nakaji
- Center of Healthy Aging Innovation, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (K.S.); (T.M.); (S.N.)
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (S.S.); (C.I.); (H.S.); (S.F.)
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Graduate School of Medicine, Hirosaki University, Hirosaki 036-8562, Japan; (S.S.); (C.I.); (H.S.); (S.F.)
| |
Collapse
|
6
|
Hamada M, Inaba H, Nishiyama K, Yoshida S, Yura Y, Matsumoto‐Nakano M, Uzawa N. Transcriptomic analysis of Porphyromonas gingivalis-infected head and neck cancer cells: Identification of PLAU as a candidate prognostic biomarker. J Cell Mol Med 2024; 28:10.1111/jcmm.18167. [PMID: 38363001 PMCID: PMC10870695 DOI: 10.1111/jcmm.18167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Periodontal disease is a risk factor for head and neck squamous cell carcinoma (HNSCC), and Porphyromonas gingivalis, a major periodontal pathogen, has been identified as a specific and potentially independent microbial factor that increases the risk of cancer mortality. Gene expression in HNSCC due to P. gingivalis infection and how changes in gene expression affect the prognosis of HNSCC patients are not clarified. When P. gingivalis was cultured with HNSCC cells, it efficiently adhered to these cells and enhanced their invasive ability. A transcriptome analysis of P. gingivalis -infected HNSCC cells showed that genes related to migration, including CCL20, CITED2, CTGF, C8orf44-SGK3, DUSP10, EGR3, FUZ, HBEGF, IL1B, IL24, JUN, PLAU, PTGS2, P2RY1, SEMA7A, SGK1 and SIX2, were highly up- or down-regulated. The expression of up-regulated genes was examined using the expression data of HNSCC patients obtained from The Cancer Genome Atlas (TCGA) database, and the expression of 5 genes, including PLAU, was found to be higher in cancer tissue than in solid normal tissue. An analysis of protein-protein interactions revealed that these 5 genes formed a dense network. A Cox regression analysis showed that high PLAU expression levels were associated with a poor prognosis in patients with TCGA-HNSCC. Furthermore, the prognostic impact correlated with tumour size and the presence or absence of lymph node metastasis. Collectively, these results suggest the potential of PLAU as a molecular prognostic marker in HNSCC patients. Further in vivo and in vitro studies are needed to verify the findings of this study.
Collapse
Affiliation(s)
- Masakazu Hamada
- Department of Oral & Maxillofacial Oncology and SurgeryOsaka University Graduate School of Dentistry
| | - Hiroaki Inaba
- Department of Pediatric DentistryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Kyoko Nishiyama
- Department of Oral & Maxillofacial Oncology and SurgeryOsaka University Graduate School of Dentistry
| | - Sho Yoshida
- Department of Pediatric DentistryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Yoshiaki Yura
- Department of Oral & Maxillofacial Oncology and SurgeryOsaka University Graduate School of Dentistry
| | - Michiyo Matsumoto‐Nakano
- Department of Pediatric DentistryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
| | - Narikazu Uzawa
- Department of Oral & Maxillofacial Oncology and SurgeryOsaka University Graduate School of Dentistry
| |
Collapse
|
7
|
Shin H, Baek Y, Lee D, Xu Y, Kwon Y, Jo I, Ha NC. Structural and Functional Analyses of the Flavoprotein Disulfide Reductase FN0820 of Fusobacterium nucleatum. J Microbiol 2023; 61:1033-1041. [PMID: 38117463 DOI: 10.1007/s12275-023-00095-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 12/21/2023]
Abstract
Escherichia coli RclA and Staphylococcus aureus MerA are part of the Group I flavoprotein disulfide reductase (FDR) family and have been implicated in the contribution to bacterial pathogenesis by defending against the host immune response. Fusobacterium nucleatum is a pathogenic, anaerobic Gram-negative bacterial species commonly found in the human oral cavity and gastrointestinal tract. In this study, we discovered that the F. nucleatum protein FN0820, belonging to the Group I FDR family, exhibited a higher activity of a Cu2+-dependent NADH oxidase than E. coli RclA. Moreover, FN0820 decreased the dissolved oxygen level in the solution with higher NADH oxidase activity. We found that L-tryptophan and its analog 5-hydroxytryptophan inhibit the FN0820 activities of NADH oxidase and the concomitant reduction of oxygen. Our results have implications for developing new treatment strategies against pathogens that defend the host immune response with Group I FDRs.
Collapse
Affiliation(s)
- Hyunwoo Shin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yeongjin Baek
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dukwon Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yongbin Xu
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, 116600, People's Republic of China
| | - Yonghoon Kwon
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inseong Jo
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| | - Nam-Chul Ha
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, CALS, Seoul National University, Seoul, 08826, Republic of Korea.
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
8
|
Shen B, Yang L, Xu H, Zhang Y, Ming D, Zhu L, Wang Y, Jiang L. Detection and treatment of biofilm-induced periodontitis by histidine-doped FeSN nanozyme with ultra-high peroxidase-like activity. J Colloid Interface Sci 2023; 650:211-221. [PMID: 37402327 DOI: 10.1016/j.jcis.2023.06.188] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 06/27/2023] [Indexed: 07/06/2023]
Abstract
Pathogenic biofilm induced oral diseases have posed a significant treat to human health, such as periodontitis resulting from the formation of bacterial biofilm on teeth and gums. The traditional treatment methods such as mechanical debridement and antibiotic therapy encounter the poor therapeutic effect. Recently, numerous nanozymes with excellent antibacterial effect have been widely used in the treatment of oral diseases. In this study, a novel iron-based nanozyme (FeSN) generated by histidine-doped FeS2 with high peroxidase-like (POD-like) activity was designed for the oral biofilm removal and treatment of periodontitis. FeSN exhibited an extremely high POD-like activity, and enzymatic reaction kinetics and theoretical calculations had demonstrated its catalytic efficiency to be approximately 30 times than that of FeS2. The antibacterial experiments showed that FeSN had robust antibacterial activity against Fusobacterium nucleatum in the presence of H2O2, causing a reduction in the levels of glutathione reductase and ATP in bacterial cells, while increasing the level of oxidase coenzyme. The ultrahigh POD-like activity of FeSN allowed for easy detection of pathogenic biofilms and promoted the breakdown of biofilm structure. Furthermore, FeSN demonstrated excellent biocompatibility and low cytotoxicity to human fibroblast cells. In a rat model of periodontitis, FeSN exhibited significant therapeutic effects by reducing the extent of biofilm formation, inflammation, and alveolar bone loss. Taken together, our results suggested that FeSN, generated by self-assembly of two amino acids, represented a promising approach for biofilm removal and periodontitis treatment. This method has the potential to overcome the limitations of current treatments and provide an effective alternative for periodontitis treatment.
Collapse
Affiliation(s)
- Bowen Shen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lei Yang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hengyue Xu
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yangheng Zhang
- Department of Periodontology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Dengming Ming
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuxian Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Ling Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
9
|
Lu Y, Li Z, Peng X. Regulatory effects of oral microbe on intestinal microbiota and the illness. Front Cell Infect Microbiol 2023; 13:1093967. [PMID: 36816583 PMCID: PMC9928999 DOI: 10.3389/fcimb.2023.1093967] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Over the past decade, the association between oral health, intestinal microbiota, and systemic diseases has been further validated. Some oral microbial species have been isolated from pathological intestine mucosa or feces and identified as biomarkers for intestinal diseases. A small proportion of oral microbiome passes through or colonizes the lower gastrointestinal tract, even in healthy individuals. Opportunistic pathogens from the oral cavity may expand and participate in the occurrence and progression of intestinal diseases when the anatomical barrier is disrupted. These disruptors interact with the intestinal microbiota, disturbing indigenous microorganisms, and mucosal barriers through direct colonization, blood circulation, or derived metabolite pathways. While interacting with the host's immune system, oral-derived pathogens stimulate inflammation responses and guide the transition of the intestinal microenvironment from a healthy state to a pre-disease state. Therefore, the oral-gut microbiome axis sheds light on new clinical therapy options, and gastrointestinal tract ecology balance necessitates simultaneous consideration of both oral and gut microbiomes. This review summarizes possible routes of oral microbes entering the intestine and the effects of certain oral bacteria on intestinal microbiota and the host's immune responses.
Collapse
|
10
|
Kudra A, Muszyński D, Sobocki BK, Atzeni A, Carbone L, Kaźmierczak-Siedlecka K, Połom K, Kalinowski L. Insights into oral microbiome and colorectal cancer - on the way of searching new perspectives. Front Cell Infect Microbiol 2023; 13:1159822. [PMID: 37124035 PMCID: PMC10130407 DOI: 10.3389/fcimb.2023.1159822] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Microbiome is a keystone polymicrobial community that coexist with human body in a beneficial relationship. These microorganisms enable the human body to maintain homeostasis and take part in mechanisms of defense against infection and in the absorption of nutrients. Even though microbiome is involved in physiologic processes that are beneficial to host health, it may also cause serious detrimental issues. Additionally, it has been proven that bacteria can migrate to other human body compartments and colonize them even although significant structural differences with the area of origin exist. Such migrations have been clearly observed when the causes of genesis and progression of colorectal cancer (CRC) have been investigated. It has been demonstrated that the oral microbiome is capable of penetrating into the large intestine and cause impairments leading to dysbiosis and stimulation of cancerogenic processes. The main actors of such events seem to be oral pathogenic bacteria belonging to the red and orange complex (regarding classification of bacteria in the context of periodontal diseases), such as Porphyromonas gingivalis and Fusobacterium nucleatum respectively, which are characterized by significant amount of cancerogenic virulence factors. Further examination of oral microbiome and its impact on CRC may be crucial on early detection of this disease and would allow its use as a precise non-invasive biomarker.
Collapse
Affiliation(s)
- Anna Kudra
- Scientific Circle of Studies Regarding Personalized Medicine Associated with Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
| | - Damian Muszyński
- Scientific Circle of Studies Regarding Personalized Medicine Associated with Department of Medical Laboratory Diagnostics, Medical University of Gdansk, Gdansk, Poland
| | - Bartosz Kamil Sobocki
- Scientific Circle of Oncology and Radiotherapy, Medical University of Gdansk, Gdansk, Poland
| | - Alessandro Atzeni
- Institut d’Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Unitat de Nutrició, Reus, Spain
- Centro de Investigación Biomédica en Red Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Institute of Health Carlos III, Madrid, Spain
| | - Ludovico Carbone
- Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Karolina Kaźmierczak-Siedlecka
- Department of Medical Laboratory Diagnostics – Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
- *Correspondence: Karolina Kaźmierczak-Siedlecka,
| | - Karol Połom
- Department of Surgical Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics – Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, University of Technology, Gdansk, Poland
| |
Collapse
|