1
|
Chang X, Li H, Huang Z, Song C, Zhang Z, Pan W. Matrine suppresses hepatocellular carcinoma tumorigenesis by modulating circ_0055976/miR-1179/lactate dehydrogenase A axis. ENVIRONMENTAL TOXICOLOGY 2024; 39:1481-1493. [PMID: 37994612 DOI: 10.1002/tox.24041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/13/2023] [Accepted: 11/05/2023] [Indexed: 11/24/2023]
Abstract
BACKGROUND Matrine has been identified to have anticancer activity in hepatocellular carcinoma (HCC). Circ_0055976 was highly expressed in HCC. Here, we investigated the function and relationship of Matrine and circ_0055976 in HCC tumorigenesis. METHODS Cell proliferation and invasion were detected using Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine (EdU), colony formation and transwell assays, respectively. Cell aerobic glycolysis was evaluated by detecting glucose consumption, lactate production, and the ratios of ATP/ADP. Levels of genes and proteins were detected by quantitative real-time polymerase chain reaction and Western blotting. The target relationship between miR-1179 and circ_0055976 or lactate dehydrogenase A (LDHA) was analyzed by dual-luciferase reporter assay. The mouse xenograft model was established to conduct the in vivo assay. RESULTS Matrine suppressed HCC cell proliferation, invasion and anaerobic glycolysis in vitro. Circ_0055976 was highly expressed in HCC tissues and cells, and was reduced by Matrine treatment. Moreover, overexpression of circ_0055976 reversed the anticancer effects of Matrine in HCC cells. Mechanistically, circ_0055976/miR-1179/LDHA formed an axis. Circ_0055976 knockdown or miR-1179 overexpression impaired HCC cell proliferation, invasion, and anaerobic glycolysis, which were reversed by miR-1179 inhibition or LDHA overexpression. Meanwhile, forced expression of LDHA abolished the regulatory effects of Matrine on HCC cells. In the clinic, Matrine impeded HCC tumor growth in vivo, and this effect was boosted after circ_0055976 silencing. CONCLUSION Matrine suppressed HCC cell proliferation, invasion, and anaerobic glycolysis via circ_0055976/miR-1179/LDHA axis, providing a new insight into the clinical application of Matrine in HCC treatment.
Collapse
Affiliation(s)
- Xinfeng Chang
- Department of human anatomy, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Hongwei Li
- Department of human anatomy, Gannan Medical University, Ganzhou, China
| | - Zhengchun Huang
- Department of human anatomy, Gannan Medical University, Ganzhou, China
| | - Chunhua Song
- Department of surgery, Jiangsu Vocational College of Medicine, Yancheng, China
| | - Zhihua Zhang
- Graduate Department, Gannan Medical University, Ganzhou, China
| | - Wen Pan
- Department of Physiology, Jiangsu Vocational College of Medicine, Yancheng, China
| |
Collapse
|
2
|
Rao G, Peng X, Tian Y, Fu X, Zhang Y. Circular RNAs in hepatocellular carcinoma: biogenesis, function, and pathology. Front Genet 2023; 14:1106665. [PMID: 37485335 PMCID: PMC10361733 DOI: 10.3389/fgene.2023.1106665] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Both genetic and environmental factors through a multitude of underlying molecular mechanisms participate in the pathogenesis of HCC. Recently, numerous studies have shown that circular RNAs (circRNAs), an emerging class of non-coding RNAs characterized by the presence of covalent bonds linking 3' and 5' ends, play an important role in the initiation and progression of cancers, including HCC. In this review, we outline the current status of the field of circRNAs, with an emphasis on the functions and mechanisms of circRNAs in HCC and its microenvironment. We also summarize and discuss recent advances of circRNAs as biomarkers and therapeutic targets. These efforts are anticipated to throw new insights into future perspectives about circRNAs in basic, translational and clinical research, eventually advancing the diagnosis, prevention and treatment of HCC.
Collapse
Affiliation(s)
- Guocheng Rao
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Xi Peng
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yan Tian
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- Department of Endocrinology and Metabolism, Cancer Center West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
4
|
Jesenko T, Brezar SK, Cemazar M, Biasin A, Tierno D, Scaggiante B, Grassi M, Grassi C, Dapas B, Truong NH, Abrami M, Zanconati F, Bonazza D, Rizzolio F, Parisi S, Pastorin G, Grassi G. Targeting Non-Coding RNAs for the Development of Novel Hepatocellular Carcinoma Therapeutic Approaches. Pharmaceutics 2023; 15:pharmaceutics15041249. [PMID: 37111734 PMCID: PMC10145575 DOI: 10.3390/pharmaceutics15041249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) remains a global health challenge, representing the third leading cause of cancer deaths worldwide. Although therapeutic advances have been made in the few last years, the prognosis remains poor. Thus, there is a dire need to develop novel therapeutic strategies. In this regard, two approaches can be considered: (1) the identification of tumor-targeted delivery systems and (2) the targeting of molecule(s) whose aberrant expression is confined to tumor cells. In this work, we focused on the second approach. Among the different kinds of possible target molecules, we discuss the potential therapeutic value of targeting non-coding RNAs (ncRNAs), which include micro interfering RNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). These molecules represent the most significant RNA transcripts in cells and can regulate many HCC features, including proliferation, apoptosis, invasion and metastasis. In the first part of the review, the main characteristics of HCC and ncRNAs are described. The involvement of ncRNAs in HCC is then presented over five sections: (a) miRNAs, (b) lncRNAs, (c) circRNAs, (d) ncRNAs and drug resistance and (e) ncRNAs and liver fibrosis. Overall, this work provides the reader with the most recent state-of-the-art approaches in this field, highlighting key trends and opportunities for more advanced and efficacious HCC treatments.
Collapse
Affiliation(s)
- Tanja Jesenko
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Simona Kranjc Brezar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
| | - Maja Cemazar
- Department of Experimental Oncology, Institute of Oncology Ljubljana, Zaloska 2, SI-1000 Ljubljana, Slovenia
- Faculty of Health Sciences, University of Primorska, Polje 42, SI-6310 Izola, Slovenia
| | - Alice Biasin
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Domenico Tierno
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Chiara Grassi
- Degree Course in Medicine, University of Trieste, I-34149 Trieste, Italy
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| | - Nhung Hai Truong
- Faculty of Biology and Biotechnology, VNUHCM-University of Science, Ho Chi Minh City 70000, Vietnam
| | - Michela Abrami
- Department of Engineering and Architecture, Trieste University, via Valerio 6, I-34127 Trieste, Italy
| | - Fabrizio Zanconati
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I-34149 Trieste, Italy
| | - Deborah Bonazza
- Department of Medical, Surgical and Health Sciences, University of Trieste, Cattinara Hospital, Strada di Fiume, 447, I-34149 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, I-33081 Aviano, Italy
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30172 Venezia, Italy
| | - Salvatore Parisi
- Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, I-30172 Venezia, Italy
- Doctoral School in Molecular Biomedicine, University of Trieste, I-34149 Trieste, Italy
| | - Giorgia Pastorin
- Pharmacy Department, National University of Singapore, Block S9, Level 15, 4 Science Drive 2, Singapore 117544, Singapore
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy
| |
Collapse
|
5
|
Zhang L, Xu T, Li Y, Pang Q, Ding X. Serum hsa_circ_0000615 is a prognostic biomarker of sorafenib resistance in hepatocellular carcinoma. J Clin Lab Anal 2022; 36:e24741. [PMID: 36268976 DOI: 10.1002/jcla.24741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) can shape tumor progression and chemoresistance. How specific circRNAs shape hepatocellular carcinoma (HCC) chemoresistance, however, remains to be fully elucidated. METHODS In total, serum samples were collected from 202 HCC patients that had completed four sorafenib chemotherapy cycles. Serum hsa_circ_0000615 levels in these patients were quantified via quantitative real-time polymerase chain reaction (qRT-PCR), with demographic details and survival outcomes being recorded for subsequent analyses. RESULTS We found hsa_circ_0000615 to be significantly upregulated in chemoresistant HCC patients relative to chemosensitive patients, with such upregulation being positively correlated with disease stage. Moreover, the area under the curve (AUC) value for hsa_circ_0000615 was moderately good, and high levels of hsa_circ_0000615 expression were associated with shorter overall survival among chemoresistant HCC patients. CONCLUSION Our results highlight hsa_circ_0000615 as a promising driver of sorafenib resistance in HCC patients, highlighting it as a promising target for the treatment of this deadly cancer type.
Collapse
Affiliation(s)
- Lunjun Zhang
- Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Tao Xu
- Department of Clinical Laboratory, School of Laboratory Medicine, Bengbu Medical College, Bengbu, China
| | - Yuanyuan Li
- Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qing Pang
- The Second Clinical Medical College of Anhui Medical University, Hefei, China
| | - Xiaolin Ding
- Department of Clinical Laboratory Science, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
6
|
Chen J, Sun M, Huang L, Fang Y. The Long noncoding RNA LINC00200 Promotes the Malignant Progression of MYCN-Amplified Neuroblastoma via Binding to Insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3) to Enhance the Stability of of Zic family member 2 (ZIC2) mRNA. Pathol Res Pract 2022; 237:154059. [DOI: 10.1016/j.prp.2022.154059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/24/2022] [Accepted: 08/03/2022] [Indexed: 12/09/2022]
|