1
|
de Araújo Sanchez C, Gonçalves JA, Andrade E Silva ML, Rodrigues MGF, Santos FA, da Silva de Laurentiz R, Gomes de Soutello RV. In vivo anthelmintic activity of hydroethanolic extract of Piper cubeba fruits in sheep naturally infected with gastrointestinal nematodes. Vet Parasitol 2025; 333:110348. [PMID: 39549374 DOI: 10.1016/j.vetpar.2024.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024]
Abstract
Parasitic infections caused by gastrointestinal nematodes (GINs) are the main cause of production losses in small ruminants, especially sheep. Haemonchus contortus is the most common nematode in tropical regions. The indiscriminate use of synthetic anthelmintics to control helminthosis has led to the development of resistant parasites. As a result, there has been growing interest in using plant extracts and natural products to control gastrointestinal nematodes in sheep. Therefore, this study aimed to evaluate the in vivo anthelmintic activity of the hydroethanolic extract of Piper cubeba fruit in sheep naturally infected with gastrointestinal nematodes. Initially, an experiment was conducted where the Piper cubeba extract was administered at a dose of 2.5 mg/kg body weight three times at 7-day intervals. For this, 18 animals were divided into three groups: a control group, a group treated with levamisole phosphate at 4.7 mg/kg body weight subcutaneously, and a group treated with Piper cubeba extract, which was administered in pure form orally to the animals through a cannula. Based on the results of this experiment, a second experiment was conducted using the same experimental design and same extract, but the effectiveness of the extract was evaluated at a single dose of 5.0 mg/kg body weight administered on day 0. The determination of biochemical parameters for the group treated with extract and the identification of nematode species for all groups were performed on different days of this experiment. The results of the first experiment showed that the extract reduced the FEC by 84 % on day 7 and 83 % on day 35 compared to the control group. These results prompted a second experiment, using the same experimental design, but with the extract administered to the animals in a single dose of 5 mg/kg body weight. The result for the reduction in FEC in the levamisole-treated group was similar to that obtained in the first experiment, whereas in the group treated with a single dose of the extract, the reduction was significant from day 7, reaching 97 % by day 35 compared to the control group, with no significant difference from the levamisole-treated group. Regarding nematode species, on day 0, all treatments in the experiment showed a predominance of Haemonchus contortus, but other species such as Cooperia, and Oesophagostomum were also identified. On day 35, only Haemonchus contortus was identified in the extract-treated group and the levamisole-treated group, whereas Cooperia and Oesophagostomum species were also found in the control group. Toxicity tests for liver and kidney functions showed no alterations after administration of the single dose extract. These results demonstrate the in vivo anthelmintic activity of the hydroethanolic extract of Piper cubeba fruits and suggest its potential use as an alternative to synthetic chemicals in controlling parasites in sheep.
Collapse
Affiliation(s)
- Clara de Araújo Sanchez
- Universidade Estadual Paulista (Unesp), FCAT/Unesp - Faculdade de Ciências Agrárias e Tecnológicas Campus de Dracena, Rod. Cmte João Ribeiro de Barros, km 651 - Bairro das Antas, Dracena, São Paulo CEP 17900-000, Brazil
| | - Juliana Alencar Gonçalves
- Universidade Estadual Paulista (Unesp), FCAT/Unesp - Faculdade de Ciências Agrárias e Tecnológicas Campus de Dracena, Rod. Cmte João Ribeiro de Barros, km 651 - Bairro das Antas, Dracena, São Paulo CEP 17900-000, Brazil
| | - Márcio Luís Andrade E Silva
- Universidade de Franca (Unifran), Núcleo de Ciências Exatas e Tecnológicas, Parque Universitário, Av Sales de Oliveira 201, Franca, São Paulo CEP 14404-600, Brazil
| | - Maria Gabriela Fontanetti Rodrigues
- Universidade Estadual Paulista (Unesp), FCAT/Unesp - Faculdade de Ciências Agrárias e Tecnológicas Campus de Dracena, Rod. Cmte João Ribeiro de Barros, km 651 - Bairro das Antas, Dracena, São Paulo CEP 17900-000, Brazil
| | - Fernanda Amorim Santos
- Universidade Estadual Paulista (Unesp), Departamento de Física e Química, Faculdade de Engenharia Campus de Ilha Solteira, Av Brasil, 56, Centro, Ilha Solteira, São Paulo CEP 15385-000, Brazil
| | - Rosangela da Silva de Laurentiz
- Universidade Estadual Paulista (Unesp), Departamento de Física e Química, Faculdade de Engenharia Campus de Ilha Solteira, Av Brasil, 56, Centro, Ilha Solteira, São Paulo CEP 15385-000, Brazil.
| | - Ricardo Velludo Gomes de Soutello
- Universidade Estadual Paulista (Unesp), FCAT/Unesp - Faculdade de Ciências Agrárias e Tecnológicas Campus de Dracena, Rod. Cmte João Ribeiro de Barros, km 651 - Bairro das Antas, Dracena, São Paulo CEP 17900-000, Brazil.
| |
Collapse
|
2
|
Blinov A, Orobets V, Kastarnova E, Gvozdenko A, Golik A, Rekhman Z, Prasolova A, Askerova A, Kuznetsov E, Nagdalian A. Chitosan-ricobendazole complex: Synthesis, characterization and anthelmintic activity. Int J Biol Macromol 2024; 280:135572. [PMID: 39270894 DOI: 10.1016/j.ijbiomac.2024.135572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Synthesis, characterization and assessment of therapeutic efficacy of chitosan-ricobendazole complex were carried out for the first time in this work. Study of physico-chemical properties revealed the optimal ratio of chitosan: ricobendazole (30:4). Quantum chemical modeling set the optimal parameters for the formation of the chitosan-ricobendazole molecular system (E = -3765.26 kcal/mol, η = 0.127 eV), which was confirmed by Fourier-transform infrared spectroscopy. Scanning electron microscopy showed spherical particles of chitosan-ricobendazole complex ranging in size from 100 to 200 μm. Study of therapeutic efficiency was conducted on sheep with dicroceliosis. Notably, the therapeutic efficiency of the chitosan-ricobendazole complex (4 mg/kg of ricobendazole) reached 89 %, while the therapeutic efficiency of the commercial preparation ricazole (8 mg/kg of ricobendazole) was 92 %. Biochemical blood test indicated equivalent normalization of hematological parameters in sheep after treatment with ricazole and the chitosan-ricobendazole complex. Histological examination of infected sheep liver revealed that treatment with the chitosan-ricobendazole complex leads to a decrease in the number of helminth eggs with subsequent therapeutic effect on the severity of the disease. This proves the enhanced solubility of ricobendazole at a dosage of 4 mg/kg, active interaction of the components and relatively high bioavailability without increasing the release rate of ricobendazole.
Collapse
Affiliation(s)
- Andrey Blinov
- North-Caucasus Federal University, Stavropol 355017, Russia
| | | | | | | | - Alexey Golik
- North-Caucasus Federal University, Stavropol 355017, Russia
| | - Zafar Rekhman
- North-Caucasus Federal University, Stavropol 355017, Russia
| | | | - Alina Askerova
- North-Caucasus Federal University, Stavropol 355017, Russia
| | - Egor Kuznetsov
- North-Caucasus Federal University, Stavropol 355017, Russia
| | | |
Collapse
|
3
|
Cabald T, Marie-Magdeleine C, Philibert L, Caradeuc C, Bertho G, Giraud N, Cebrián-Torrejón G, Sylvestre M. Phytochemical Study of the Anthelminthic Potential of Guadeloupean Plant Biodiversity. Pharmaceuticals (Basel) 2024; 17:774. [PMID: 38931441 PMCID: PMC11206802 DOI: 10.3390/ph17060774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Gastrointestinal parasitism is a major health and welfare problem in ruminants. Synthetic chemical anthelmintic drugs have led to the emergence of resistance in gastrointestinal strongyles, inducing the search for alternatives to control the infections that affect ruminants. The objective of this work was to evaluate the anthelmintic potential of plant extracts against Haemonchus contortus Rudolphi. Three plants of the Guadeloupean biodiversity, Momordica charantia L., Carica papaya L. and Sargassum spp., were selected based on their high polyphenolic content and natural abundance. The phytochemistry of plants was explored, a biological assay against the parasite H. contortus was carried out, and several hypotheses about the way of action were proposed by an innovative electrochemical screening method.
Collapse
Affiliation(s)
- Tressy Cabald
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, 97157 Pointe-à-Pitre, France (G.C.-T.)
| | | | | | - Cédric Caradeuc
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry (UMR 8601 CNRS), University Paris Cité, 75006 Paris, France (G.B.); (N.G.)
- BioMedTech Facilities—INSERM US36|CNRS UAR2009, University Paris Cité, 75006 Paris, France
| | - Gildas Bertho
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry (UMR 8601 CNRS), University Paris Cité, 75006 Paris, France (G.B.); (N.G.)
- BioMedTech Facilities—INSERM US36|CNRS UAR2009, University Paris Cité, 75006 Paris, France
| | - Nicolas Giraud
- Laboratory of Pharmacological and Toxicological Chemistry and Biochemistry (UMR 8601 CNRS), University Paris Cité, 75006 Paris, France (G.B.); (N.G.)
- BioMedTech Facilities—INSERM US36|CNRS UAR2009, University Paris Cité, 75006 Paris, France
| | - Gerardo Cebrián-Torrejón
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, 97157 Pointe-à-Pitre, France (G.C.-T.)
| | - Muriel Sylvestre
- COVACHIM-M2E Laboratory EA 3592, Department of Chemistry, University of the French West Indies, Fouillole Campus, UFR SEN, 97157 Pointe-à-Pitre, France (G.C.-T.)
| |
Collapse
|
4
|
Hidayatik N, Harini SL, Triwidiawati N, Putri SI, Proboningrat A, Kristianingtyas L, Khairullah AR, Suwanti LT, Hestianah EP, Kuncorojakti S, Yuliani MGA, Novianti AN, Ramdani D, Rahmatillah RS, Jayanegara A. Ovicidal activity and cytotoxicity of ethanolic extract of turmeric ( Curcuma longa) and green tea ( Camellia sinensis) to treat digestive parasite of sheep. Open Vet J 2024; 14:1467-1475. [PMID: 39055752 PMCID: PMC11268915 DOI: 10.5455/ovj.2024.v14.i6.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/19/2024] [Indexed: 07/27/2024] Open
Abstract
Background The Trichuris eggs are collected from naturally infected sheep. Natural antihelmintics such as herbal medicines are needed as an alternative, such as natural compounds from endemic plants. Aim This present study aims to evaluate the ovicidal activity and cytotoxicity effects of ethanolic extract of Curcuma longa (EECL) and Camelia sinensis (EECS) as a biological anthelmintic against the egg of Trichuris sp. Methods The Trichuris eggs are collected from naturally infected sheep. CMC-Na solution 1% was used as a control. The treatments were 0.12% EECL; 0.24% EECL; 0.15% EECS; 0.30% EECS; a combination of 0.12% EECL and 0.30% EECS; a combination of 0.24% EECL; and 0.15% EECS. Ovicidal activity testing by microscopic examination of eggs treated using different concentrations of EECL extract, EECS, and a combination of them. They were exposed for various times (7, 14, 21, and 28 days) and incubated at room temperature. Results The study shows that a combination of C. longa extract and tea extract exhibits good ovicidal anthelmintic activity against Trichuris sp. in sheep. Cytotoxicity examination using the 3-(4,5-dimethylthiazol-2-yl) 2,5-diphenyl tetrazolium bromide (MTT) test. Based on MTT data processed using regression analysis, the obtained LC50 from the administration of EECL, EECS, and a combination of both in a ratio of 1:1, 2:2, 1:2, and 2:1. The combination of EECL extract and EECS with the highest concentration produced cell viability of 28.46%, 17.25%, 56.01%, and 46.47%, respectively. Conclusion It can be concluded that the most cytotoxic ingredient is found in the combination of EECL and EECS (2:2) at 17.25% and the safest is in the ratio (1:2) at 56.01%.
Collapse
Affiliation(s)
- Nanik Hidayatik
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Sefi Lestyo Harini
- Master Program of Veterinary Science and Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Nafas Triwidiawati
- Bachelor Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Shalsa Izza Putri
- Bachelor Program of Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Annise Proboningrat
- Division of Veterinary Pathology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Luviana Kristianingtyas
- Study Program of Veterinary Medicine, Faculty of Health, Muhammadiyah University (UM) West Sumatra, Bukit Tinggi, Indonesia
| | - Aswin Rafif Khairullah
- Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor, Indonesia
| | - Lucia Tri Suwanti
- Division of Veterinary Parasitology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Eka Pramyrtha Hestianah
- Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Suryo Kuncorojakti
- Division of Veterinary Anatomy, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
- Research Center for Vaccine Technology and Development, Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
| | - M. Gandul Atik Yuliani
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Arindita Niatazya Novianti
- Division of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Diky Ramdani
- Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ririn Siti Rahmatillah
- Department of Animal Production, Faculty of Animal Husbandry, Universitas Padjadjaran, Sumedang, Indonesia
| | - Anuraga Jayanegara
- Department of Animal Nutrition and Feed Technology, Faculty of Animal Husbandry, IPB University, Bogor, Indonesia
| |
Collapse
|
5
|
Salt-Tolerant Plants as Sources of Antiparasitic Agents for Human Use: A Comprehensive Review. Mar Drugs 2023; 21:md21020066. [PMID: 36827107 PMCID: PMC9967096 DOI: 10.3390/md21020066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Parasitic diseases, especially those caused by protozoans and helminths, such as malaria, trypanosomiasis, leishmaniasis, Chagas disease, schistosomiasis, onchocerciasis, and lymphatic filariasis, are the cause of millions of morbidities and deaths every year, mainly in tropical regions. Nature has always provided valuable antiparasitic agents, and efforts targeting the identification of antiparasitic drugs from plants have mainly focused on glycophytes. However, salt-tolerant plants (halophytes) have lately attracted the interest of the scientific community due to their medicinal assets, which include antiparasitic properties. This review paper gathers the most relevant information on antiparasitic properties of halophyte plants, targeting human uses. It includes an introduction section containing a summary of some of the most pertinent characteristics of halophytes, followed by information regarding the ethnomedicinal uses of several species towards human parasitic diseases. Then, information is provided related to the antiprotozoal and anthelmintic properties of halophytes, determined by in vitro and in vivo methods, and with the bioactive metabolites that may be related to such properties. Finally, a conclusion section is presented, addressing perspectives for the sustainable exploitation of selected species.
Collapse
|
6
|
Mohammed AE, Alghamdi SS, Alharbi NK, Alshehri F, Suliman RS, Al-Dhabaan F, Alharbi M. Limoniastrum monopetalum-Mediated Nanoparticles and Biomedicines: In Silico Study and Molecular Prediction of Biomolecules. Molecules 2022; 27:8014. [PMID: 36432115 PMCID: PMC9693928 DOI: 10.3390/molecules27228014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/22/2022] Open
Abstract
An in silico approach applying computer-simulated models helps enhance biomedicines by sightseeing the pharmacology of potential therapeutics. Currently, an in silico study combined with in vitro assays investigated the antimicrobial ability of Limoniastrum monopetalum and silver nanoparticles (AgNPs) fabricated by its aid. AgNPs mediated by L. monopetalum were characterized using FTIR, TEM, SEM, and DLS. L. monopetalum metabolites were detected by QTOF-LCMS and assessed using an in silico study for pharmacological properties. The antibacterial ability of an L. monopetalum extract and AgNPs was investigated. PASS Online predictions and the swissADME web server were used for antibacterial activity and potential molecular target metabolites, respectively. Spherical AgNPs with a 68.79 nm average size diameter were obtained. Twelve biomolecules (ferulic acid, trihydroxy-octadecenoic acid, catechin, pinoresinol, gallic acid, myricetin, 6-hydroxyluteolin, 6,7-dihydroxy-5-methoxy 7-O-β-d-glucopyranoside, methyl gallate, isorhamnetin, chlorogenic acid, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxo-4H-chromen-3-yl 6-O-(6-deoxy-β-l-mannopyranosyl)-β-d-glucopyranoside) were identified. The L. monopetalum extract and AgNPs displayed antibacterial effects. The computational study suggested that L. Monopetalum metabolites could hold promising antibacterial activity with minimal toxicity and an acceptable pharmaceutical profile. The in silico approach indicated that metabolites 8 and 12 have the highest antibacterial activity, and swissADME web server results suggested the CA II enzyme as a potential molecular target for both metabolites. Novel therapeutic agents could be discovered using in silico molecular target prediction combined with in vitro studies. Among L. Monopetalum metabolites, metabolite 12 could serve as a starting point for potential antibacterial treatment for several human bacterial infections.
Collapse
Affiliation(s)
- Afrah E. Mohammed
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Sahar S. Alghamdi
- Department of Pharmaceutical Sciences, College of Pharmacy, King Saud Bin Abdulaziz University for Health Sciences, Riyadh 11481, Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC), Riyadh 11481, Saudi Arabia
| | - Nada K. Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Fatma Alshehri
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rasha Saad Suliman
- Department of Pharmacy, Fatima College of Health Sciences, Abu Dhabi 3798, United Arab Emirates
| | - Fahad Al-Dhabaan
- Department of Biology, College of Science and Humanities, Shaqra University, Ad-Dawadimi 11911, Saudi Arabia
| | - Maha Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| |
Collapse
|
7
|
Rodrigues MJ, Custódio L, Mecha D, Zengin G, Cziáky Z, Sotkó G, Pereira CG. Nutritional and Phyto-Therapeutic Value of the Halophyte Cladium mariscus L. (Pohl.): A Special Focus on Seeds. PLANTS (BASEL, SWITZERLAND) 2022; 11:2910. [PMID: 36365362 PMCID: PMC9657221 DOI: 10.3390/plants11212910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
This work searched for the phyto-therapeutic potential and nutritional value of seeds from the halophyte Cladium mariscus L. (Pohl.), aiming at its use as a source of bioactive ingredients for the food industry. Hence, the nutritional profile, including minerals, of seeds biomass was determined; food-grade samples were prepared, and their phytochemical fingerprinting assessed. Extracts were evaluated for in vitro antioxidant potential, inhibitory capacity towards enzymes related to neuroprotection, diabetes, and hyperpigmentation, and anti-inflammatory properties, along with a toxicological assessment. Sawgrass seeds can be considered a proper nutritional source with a good supply of minerals. All extracts had a high level of total phenolics (65.3−394.4 mg GAE/g DW) and showed a chemically rich and diverse profile of metabolites that have several biological properties described (e.g., antioxidant, anti-inflammatory). Extracts had no significant toxicity (cell viabilities > 80%) and were overall strong antioxidants (particularly at radical scavenging and reducing iron), effective tyrosinase inhibitors (55−71 mg KAE/g DW), showed anti-inflammatory properties (30−60% NO decrease), and had moderate capacity to inhibit enzymes related to neuroprotection (AChE 3.7−4.2, BChE 4.3−6.0 mg GALE/g DW) and diabetes (α-glucosidase 1.0−1.1, α-amylase 0.8−1.1 mmol ACAE/g). Altogether, results suggest that sawgrass seeds have the potential to be exploited as a new food product and are a reservoir of bioactive molecules with prospective applications as ingredients for value-added, functional, and/or preservative food products.
Collapse
Affiliation(s)
- Maria João Rodrigues
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Luísa Custódio
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Débora Mecha
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey
| | - Zoltán Cziáky
- Agricultural and Molecular Research and Service Institute, University of Nyíregyháza, 4400 Nyíregyháza, Hungary
| | - Gyula Sotkó
- Sotiva Seed Ltd., 4440 Tiszavasvári, Hungary
| | - Catarina Guerreiro Pereira
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
8
|
Oliveira M, Lima CS, Llorent-Martínez EJ, Hoste H, Custódio L. Impact of Seasonal and Organ-Related Fluctuations on the Anthelmintic Properties and Chemical Profile of Cladium mariscus (L.) Pohl Extracts. FRONTIERS IN PLANT SCIENCE 2022; 13:934644. [PMID: 35812938 PMCID: PMC9260656 DOI: 10.3389/fpls.2022.934644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 06/06/2022] [Indexed: 06/15/2023]
Abstract
The use of plants and their metabolites stands as a promising option to tackle parasitic infections by gastrointestinal nematodes (GIN) in integrated control strategies. Still, the influence of environmental and phenological factors, and their interactions, in the wild on the metabolomics and biological properties of target plant species, is often disregarded. In this work, we hypothesized that variations in the anthelmintic (AH) properties and chemical composition of extracts from the salt tolerant species Cladium mariscus L. Pohl (sawgrass) may be influenced by seasonal factors and organ-parts. To test this hypothesis, acetone/water extracts were prepared from dried biomass obtained from aerial organs collected from sawgrass in consecutive seasons and tested against Haemonchus contortus and Trichostrongylus colubriformis by the larval exsheathment inhibition assay (LEIA) and egg hatching inhibition assay (EHIA). To ascertain the role of plant organ, the activity of leaves and inflorescences extracts from summer samples was compared. The role of polyphenols in the anthelmintic activity depending on GINs and fluctuations across seasons and plant organs was assessed using polyvinylpolypyrrolidone (PVPP), coupled with an in-depth chemical profiling analysis using high-performance liquid chromatography completed with electrospray ionization mass spectrometric detection (HPLC-ESI-MSn). Main differences in anthelmintic activities were observed for summer and autumn samples, for both assays. Moreover, inflorescences' extracts were significantly more active than those from leaves against both parasite species on EHIA and against H. contortus on LEIA. Application of PVPP totally inhibit the AH effects based on EHIA and only partly for LEIA. Non-treated PVPP extracts were predominantly composed of flavan-3-ols, proanthocyanidins, luteolin and glycosylated flavonoids, while two flavonoid glycosides were quantified in all PVPP-treated samples. Thus, the activity of such compounds should be further explored, although some unknown metabolites remain to be identified. This study reinforces the hypothesis of the AH potential of sawgrass and of its polyphenolic metabolites uses as nutraceutical and/or phytotherapeutic drugs.
Collapse
Affiliation(s)
- Marta Oliveira
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Caroline Sprengel Lima
- Laboratory of Antibiotics and Chemotherapeutics, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), São Paulo State University, São José do Rio Preto, Brazil
| | - Eulogio J. Llorent-Martínez
- Department of Physical and Analytical Chemistry, Faculty of Experimental Sciences, University of Jaén, Jaén, Spain
| | - Hervé Hoste
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
- Université de Toulouse, ENVT, Toulouse, France
| | - Luísa Custódio
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
9
|
In Vitro Anthelmintic Activity of Sea Buckthorn (Hippophae rhamnoides) Berry Juice against Gastrointestinal Nematodes of Small Ruminants. BIOLOGY 2022; 11:biology11060825. [PMID: 35741346 PMCID: PMC9219796 DOI: 10.3390/biology11060825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022]
Abstract
Gastrointestinal nematodes are one of the major threats in small ruminant breeding. Their control is difficult due to the development of anthelmintic resistance, and the search for new molecules endowed with anthelmintic activity (AH) is considered a priority. In this context, we evaluated the in vitro AH activity of two commercial sea buckthorn (Hippophae rhamnoides) berry juices, namely SBT and SBF. The in vitro evaluation was based on the egg-hatch test and larval exsheathment assay at different concentrations. Data were statistically analysed, and the EC50 was calculated. Chemical analyses were performed to evaluate the total polyphenol content of the juices and chemical profile of the most represented compounds. The role of the polyphenolic fraction in the anthelmintic activity of the juices was also assessed. At the highest concentrations, the activity of SBT was high in both tests and comparable to that observed in the thiabendazole-treated positive controls, while SBF showed a lower efficacy. Glycosylated isorhamnetin and quercetin were the most represented polyphenolic compounds in both juices. In conclusion, both H. rhamnoides berry juices tested in this study showed interesting anthelmintic properties in vitro.
Collapse
|