1
|
Lavie O, Buxdorf K, Eshed Williams L. Optimizing cannabis cultivation: an efficient in vitro system for flowering induction. PLANT METHODS 2024; 20:141. [PMID: 39267047 PMCID: PMC11397071 DOI: 10.1186/s13007-024-01265-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Cannabis sativa L. is a versatile medicinal plant known for its therapeutic properties, derived from its diverse array of secondary metabolites synthesized primarily in female flower organs. Breeding cannabis is challenging due to its dioecious nature, strict regulatory requirements, and the need for photoperiod control to trigger flowering, coupled with highly dispersible pollen that can easily contaminate nearby female flowers. This study aimed to develop a protocol for in vitro flowering in cannabis, investigate factors affecting in vitro flower production, and generate viable in vitro seeds, potentially offering a method for producing sterile cannabinoids or advancing breeding techniques. RESULTS We show that the life cycle of cannabis can be fully completed in tissue culture; plantlets readily produce inflorescences and viable seeds in vitro. Our findings highlight the superior performance of DKW medium with 2% sucrose in a filtered vessel and emphasize the need for low light intensity during flower induction to optimize production. The improved performance in filtered vessels suggests that plants conduct photosynthesis in vitro, highlighting the need for future investigations into the effects of forced ventilation to refine this system. All tested lines readily developed inflorescences upon induction, with a 100% occurrence rate, including male flowering. We revealed the non-dehiscent trait of in vitro anthers, which is advantageous as it allows for multiple crosses to be conducted in vitro without concerns about cross-contamination. CONCLUSION The current work developed and optimized an effective protocol for in vitro flowering and seed production in cannabis, potentially providing a platform for sterile cannabinoid production and an efficient tool for breeding programs. This system allows for the full and consistent control of plant growth conditions year-round, potentially offering the reliable production of sterile molecules suitable for pharmacological use. As a breeding strategy, this method overcomes the complex challenges of breeding cannabis, such as the need for large facilities, by enabling the production of hundreds of lines in a small facility. By offering precise control over factors such as plant growth regulators, light intensity, photoperiod, and temperature, this system also serves as a valuable tool for studying flowering aspects in cannabis.
Collapse
Affiliation(s)
- Orly Lavie
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Kobi Buxdorf
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | - Leor Eshed Williams
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
2
|
Puzanskiy RK, Romanyuk DA, Kirpichnikova AA, Yemelyanov VV, Shishova MF. Plant Heterotrophic Cultures: No Food, No Growth. PLANTS (BASEL, SWITZERLAND) 2024; 13:277. [PMID: 38256830 PMCID: PMC10821431 DOI: 10.3390/plants13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024]
Abstract
Plant cells are capable of uptaking exogenous organic substances. This inherited trait allows the development of heterotrophic cell cultures in various plants. The most common of them are Nicotiana tabacum and Arabidopsis thaliana. Plant cells are widely used in academic studies and as factories for valuable substance production. The repertoire of compounds supporting the heterotrophic growth of plant cells is limited. The best growth of cultures is ensured by oligosaccharides and their cleavage products. Primarily, these are sucrose, raffinose, glucose and fructose. Other molecules such as glycerol, carbonic acids, starch, and mannitol have the ability to support growth occasionally, or in combination with another substrate. Culture growth is accompanied by processes of specialization, such as elongation growth. This determines the pattern of the carbon budget. Culture ageing is closely linked to substrate depletion, changes in medium composition, and cell physiological rearrangements. A lack of substrate leads to starvation, which results in a decrease in physiological activity and the mobilization of resources, and finally in the loss of viability. The cause of the instability of cultivated cells may be the non-optimal metabolism under cultural conditions or the insufficiency of internal regulation.
Collapse
Affiliation(s)
- Roman K. Puzanskiy
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia;
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, 196608 St. Petersburg, Russia;
| | | | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia; (A.A.K.); (V.V.Y.)
| |
Collapse
|
3
|
Raikar SV, Isak I, Patel S, Newson HL, Hill SJ. Establishment of feijoa ( Acca sellowiana) callus and cell suspension cultures and identification of arctigenin - a high value bioactive compound. FRONTIERS IN PLANT SCIENCE 2024; 14:1281733. [PMID: 38298607 PMCID: PMC10829094 DOI: 10.3389/fpls.2023.1281733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/20/2023] [Indexed: 02/02/2024]
Abstract
Feijoa (Acca sellowiana (O. Berg.) Burret), also known as pineapple guava, is a member of the Myrtaceae family and is well known for its fruit. Chemical profiling of the different tissues of the feijoa plant has shown that they generate an array of useful bioactive compounds which have health benefits such as significant antioxidant activities. In this study, an in vitro culture system has been developed, which could be explored to extract high-value bioactive compounds from feijoa. Feijoa tissue culture was initiated by the induction of callus from floral buds. Sections of floral buds were plated on MS medium supplemented with 2,4-D and BAP at 2.0mg/L and 0.2mg/L concentrations, respectively. Cell suspension cultures of feijoa were established using a liquid MS medium with different concentrations of 2,4-D and BAP and cultured on a rotary shaker. The growth of the cell suspension was evaluated with different parameters such as different carbohydrate sources, concentration of MS media, and inoculum density. When the cell suspensions were treated with different concentrations of MeJA at different time points, phytochemicals UPLC - QTOF MS analysis identified extractables of interest. The main compounds identified were secondary metabolites (flavonoids and flavonoid-glucosides) and plant hormones. These compounds are of interest for their potential use in therapeutics or skin and personal care products. This report investigates essential methodology parameters for establishing cell suspension cultures from feijoa floral buds, which could be used to generate in vitro biomass to produce high-value bioactive compounds. This is the first study reporting the identification of arctigenin from feijoa, a high-value compound whose pharmaceutical properties, including anti-tumour, anti-inflammatory and anti-colitis effects, have been widely reported. The ability of feijoa cell cultures to produce such high-value bioactive compounds is extremely promising for its use in pharmaceuticals, cosmeceuticals and nutraceuticals applications.
Collapse
|
4
|
Pop CE, Coste A, Vlase AM, Deliu C, Tămaș M, Casian T, Vlase L. Selection of a Digitalis purpurea Cell Line with Improved Bioconversion Capacity of Hydroquinone into Arbutin. Life (Basel) 2024; 14:84. [PMID: 38255699 PMCID: PMC10820698 DOI: 10.3390/life14010084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
This study aimed to investigate the biotransformation capabilities of a hydroquinone-tolerant Digitalis purpurea cell line (DpHQ) for bioconverting hydroquinone (HQ) into arbutin, a compound with significant therapeutic and cosmetic applications. The research evaluated the influence of various HQ concentrations, feeding protocols, and carbon sources on arbutin bioconversion yield. By using HPLC-MS for the quantification of arbutin in biomass and medium, the study revealed that higher precursor (HQ) concentration led to a more pronounced growth inhibition under single dosing than sequential dosing. At lower sugar (3%) and precursor (4 mM HQ) levels, arbutin predominantly remained within the cells, whereas higher sugar (6%) and HQ (5-6 mM) levels promoted its release into the medium. Arbutin production ranged from 591 mg/L under single dosing to 3049 mg/L with sequential dosing, with the highest yield being achieved with 5 mM HQ in divided doses and 6% glucose. This study holds novelty for being the first to demonstrate the DpHQ's tolerance to high concentrations of HQ and its efficient capabilities to bioconvert HQ to arbutin, indicating that D. purpurea is equipped with the enzymes required for this process. These aspects highlight its potential as a biotechnological source for arbutin synthesis.
Collapse
Affiliation(s)
- Carmen Elena Pop
- Department of Pharmaceutical Industry and Biotechnology, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Ana Coste
- Institute of Biological Research Cluj-Napoca, National Institute for Research and Development in Biological Sciences, 48 Republicii Street, 400015 Cluj-Napoca, Romania;
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Constantin Deliu
- Institute of Biological Research Cluj-Napoca, National Institute for Research and Development in Biological Sciences, 48 Republicii Street, 400015 Cluj-Napoca, Romania;
| | - Mircea Tămaș
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Tibor Casian
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (T.C.); (L.V.)
| | - Laurian Vlase
- Department of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, Iuliu Haţieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania; (T.C.); (L.V.)
| |
Collapse
|
5
|
Casimiro B, Mota I, Veríssimo P, Canhoto J, Correia S. Enhancing the Production of Hydrolytic Enzymes in Elicited Tamarillo ( Solanum betaceum Cav.) Cell Suspension Cultures. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12010190. [PMID: 36616319 PMCID: PMC9824068 DOI: 10.3390/plants12010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 05/07/2023]
Abstract
Plant cell suspension cultures are widely used as a tool for analyzing cellular and molecular processes, metabolite synthesis, and differentiation, bypassing the structural complexity of plants. Within the range of approaches used to increase the production of metabolites by plant cells, one of the most recurrent is applying elicitors capable of stimulating metabolic pathways related to defense mechanisms. Previous proteomics analysis of tamarillo cell lines and cell suspension cultures have been used to further characterize and optimize the growth and stress-related metabolite production under in vitro controlled conditions. The main objective of this work was to develop a novel plant-based bioreactor system to produce hydrolytic enzymes using an elicitation approach. Based on effective protocols for tamarillo micropropagation and plant cell suspension culture establishment from induced callus lines, cell growth has been optimized, and enzymatic activity profiles under in vitro controlled conditions characterized. By testing different sucrose concentrations and the effects of two types of biotic elicitors, it was found that 3% (w/v) sucrose concentration in the liquid medium enhanced the production of hydrolytic enzymes. Moreover, casein hydrolysate at 0.5 and 1.5 g/L promoted protein production, whereas yeast extract (0.5 g/L) enhanced glycosidase activity. Meanwhile, chitosan (0.05 and 0.1 g/L) enhanced glycosidases, alkaline phosphates, and protease activities.
Collapse
Affiliation(s)
- Bruno Casimiro
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- Correspondence: (B.C.); (S.C.)
| | - Inês Mota
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Paula Veríssimo
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Jorge Canhoto
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Sandra Correia
- Centre for Functional Ecology, TERRA Associate Laboratory, Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, 3000-456 Coimbra, Portugal
- InnovPlantProtect CoLab, Estrada de Gil Vaz, 7351-901 Elvas, Portugal
- Correspondence: (B.C.); (S.C.)
| |
Collapse
|