1
|
Chowdhury S, Sadhukhan P, Mahata N. Immunoinformatics investigation on pathogenic Escherichia coli proteome to develop an epitope-based peptide vaccine candidate. Mol Divers 2024:10.1007/s11030-024-11034-0. [PMID: 39516450 DOI: 10.1007/s11030-024-11034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Escherichia coli (E. coli), a gram-negative bacterium, quickly colonizes in the human gastrointestinal tract after birth and typically sustains a long-term, symbiotic relationship with the host. However, certain virulent strains of E. coli can cause diseases such as urinary tract infections, meningitis, and enteric disorders. The rising antibiotic resistance among these strains has heightened the urgency for an effective vaccine. This study employs immunoinformatics and a reverse vaccinology technique to identify prospective antigens and create an efficient vaccine construct. In this study, we reported the "Attaching and Effacing Protein" a novel outer-membrane protein conserved in all pathogenic E. coli strains, based on proteome screening. We developed an in silico multi-epitope vaccine that includes helper T lymphocyte (HTL), cytotoxic T lymphocyte (CTL), B cell lymphocyte (BCL), and pan HLA DR-binding reactive epitope (PADRE) sequences, along with appropriate linkers and adjuvants. Machine Learning algorithms were used to evaluate antigenicity, solubility, stability, and non-allergenicity of the vaccine construct. Additionally, molecular docking analysis revealed that vaccine construct has a strong predicted binding affinity for human toll-like receptors on the cell surface. In this context, laboratory validations are necessary to demonstrate the effectiveness of the possible vaccine design that showed encouraging findings through computational validation.
Collapse
Affiliation(s)
- Soham Chowdhury
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Pinkan Sadhukhan
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| |
Collapse
|
2
|
Hassan Khanzada M, Khan A, Khan K, Jalal K, Aghayeva S, Uddin R. A reverse vaccinomics approach for the designing of novel immunogenic multi-epitope vaccine construct against gas gangrene and related colorectal cancer for Clostridium septicum DSM 7534. Hum Immunol 2024; 85:111169. [PMID: 39514991 DOI: 10.1016/j.humimm.2024.111169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/11/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE Costridium septicum, the causative agent of clostridial myonecrosis or gas gangrene, has been linked with colorectal malignancies, particularly tumors of the ascending colon. Due to the pathogen's resistance and the limited understanding of its genomic structure, effective therapeutic strategies are needed. This study focuses on developing a vaccine to address this issue. METHOD In this study, we employed both subtractive proteomics and reverse vaccinology to identify potential therapeutics against C. septicum. Through subtractive proteomics, we pinpointed antigenic membrane proteins that harbor virulence factors, resistance factors, and essential components for this pathogenic bacterium. These identified membrane proteins were then used to design a chimeric subunit vaccine utilizing reverse vaccinology techniques. We utilized the most effective tools and servers to identify MHC class I, II, and B-cell epitopes. These epitopes were further evaluated computationally to assess their immunogenicity, antigenicity, allergenicity, conservancy, and toxicity. The selected immunogenic epitopes were incorporated into a chimeric subunit vaccine, complemented with immune-modulating adjuvants, linkers, and the PADRE (Pan HLA-DR epitope) amino acid sequence. The resultant vaccine construct was then shortlisyed based on their interaction with MHC molecules and the TLR4/MD2 complex via docking and molecular dynamics simulations. RESULTS Our analysis identified the Flagellar biosynthetic protein (FliR; ID: A0A386PD61) as a promising vaccine target based on systemic screening of proteome of C. septicum using subtractive genome analysis. Employing a Reverse Vaccinology approach, we identified 11 MHC-I, 19 MHC-II, and 33B-cell epitopes. Among the presented multi-epitope vaccines, the chimeric V1 had the strongest interaction with TLR4. Moreover, the immune simulation response revealed that the chimeric protein had the strongest ability to stimulate the immune system. In addition, molecular docking and molecular dynamic simulation indicated the proper and stable interactions between the chimeric cell-wall-associated transporter and TLR4 and HLAs, simulation, and in silico expression. CONCLUSION This study advances our understanding of preventive strategies against C. septicum by proposing a vaccine framework capable of inducing an immunogenic response. However, the effectiveness of this vaccine in preventing infection and potential colorectal cancer development requires validation through immunoassays (both in vitro and in vivo) and site-directed mutagenesis studies.
Collapse
Affiliation(s)
- Muhammad Hassan Khanzada
- Department of Biotechnology, University of Karachi, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Ariba Khan
- Department of Biotechnology, University of Karachi, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | | | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan.
| |
Collapse
|
3
|
Jarząb A, Dąbrowska A, Naporowski P, Krasna K, Szmyt A, Świat M, Pawlik K, Witkowska D, Ziomek E, Gamian A. Outer membrane protein C is a protective and unique vaccine antigen against Shigella flexneri 3a. Sci Rep 2024; 14:25398. [PMID: 39455688 PMCID: PMC11511853 DOI: 10.1038/s41598-024-76745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
The anti-Shigella vaccine is one of the WHO's top priorities. Every year the disease kills more than 200,000 people worldwide and poses a serious threat to children under 5 years of age and the elderly. Increasing antibiotic resistance and limitations in diagnostics emphasize the need to develop an effective vaccine. Recent research and clinical trials report multiple approaches used in Shigella-vaccine development. However, despite the efforts of researchers, pharmaceutical companies and health care organizations, there is no licensed vaccine against shigellosis available to the community. Here, we expressed, broadly characterized and demonstrated the protective properties of outer membrane protein C as an effective molecule serving as a universal antigen for Shigella vaccine. Most of the current approaches to the development of Shigella vaccine are based on the polysaccharide antigens, which are serotype specific and have always been challenging in terms of their high specificity, targeting the most exposed surface antigens identified for certain Shigella serotypes. Here, we confirm immunogenic and protective properties of the recombinant OmpC protein, which protects mice against a lethal dose of a virulent strain 2 weeks after active immunization.
Collapse
Affiliation(s)
- Anna Jarząb
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland.
| | - Anna Dąbrowska
- Department of Animal Products Technology and Quality Management, Wroclaw University of Environmental and Life Sciences, Chelmonskiego Str. 37/41, 51-630, Wroclaw, Poland
| | - Piotr Naporowski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland
| | - Karina Krasna
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland
| | - Agnieszka Szmyt
- Department of Animal Products Technology and Quality Management, Wroclaw University of Environmental and Life Sciences, Chelmonskiego Str. 37/41, 51-630, Wroclaw, Poland
| | - Michał Świat
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland
| | - Krzysztof Pawlik
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland
| | - Danuta Witkowska
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland
| | - Edmund Ziomek
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland
| | - Andrzej Gamian
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Str. 12, 53-114, Wroclaw, Poland
| |
Collapse
|
4
|
Alsaiari AA, Hakami MA, Alotaibi BS, Alkhalil SS, Alkhorayef N, Khan K, Jalal K. Delineating multi-epitopes vaccine designing from membrane protein CL5 against all monkeypox strains: a pangenome reverse vaccinology approach. J Biomol Struct Dyn 2024; 42:8385-8406. [PMID: 37599459 DOI: 10.1080/07391102.2023.2248301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
The recently identified monkeypox virus (MPXV or mpox) is a zoonotic orthopox virus that infects humans and causes diseases with traits like smallpox. The world health organization (WHO) estimates that 3-6% of MPXV cases result in death. As it might impact everyone globally, like COVID, and become the next pandemic, the cure for this disease is important for global public health. The high incidence and disease ratio of MPXV necessitates immediate efforts to design a unique vaccine candidate capable of addressing MPXV diseases. Here, we used a computational pan-genome-based vaccine design strategy for all currently reported 19 MPXV strains acquired from different regions of the world. Thus, this study's objective was to develop a new and safe vaccine candidate against MPXV by targeting the membrane CL5 protein; identified after the pangenome analysis. Proteomics and reverse vaccinology have covered up all of the MPXV epitopes that would usually stimulate robust host immune responses. Following this, only two mapped (MHC-I, MHC-II, and B-cell) epitopes were observed to be extremely effective that can be used in the construction of CL5 protein vaccine candidates. The suggested vaccine (V5) candidate from eight vaccine models was shown to be antigenic, non-allergenic, and stable (with 213 amino acids). The vaccine's candidate efficacy was evaluated by using many in silico methods to predict, improve, and validate its 3D structure. Molecular docking and molecular dynamics simulations further reveal that the proposed vaccine candidate ensemble has a high interaction energy with the HLAs and TRL2/4 immunological receptors under study. Later, the vaccine sequence was used to generate an expression vector for the E. coli K12 strain. Further study uncovers that V5 was highly immunogenic because it produced robust primary, secondary, and tertiary immune responses. Eventually, the use of computer-aided vaccine designing may significantly reduce costs and speed up the process of developing vaccines. Although, the results of this research are promising, however, more research (experimental; in vivo, and in vitro studies) is needed to verify the biological efficacy of the proposed vaccine against MPXV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Nada Alkhorayef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
5
|
Khan K, Burki S, Alsaiari AA, Alhuthali HM, Alharthi NS, Jalal K. A therapeutic epitopes-based vaccine engineering against Salmonella enterica XDR strains for typhoid fever: a Pan-vaccinomics approach. J Biomol Struct Dyn 2024; 42:8559-8573. [PMID: 37578072 DOI: 10.1080/07391102.2023.2246587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
A prevalent food-borne pathogen, Salmonella enterica serotypes Typhi, is responsible for gastrointestinal and systemic infections globally. Salmonella vaccines are the most effective, however, producing a broad-spectrum vaccine remains challenging due to Salmonella's many serotypes. Efforts are urgently required to develop a novel vaccine candidate that can tackle all S. Typhi strains because of their high resistance to multiple kinds of antibiotics (particularly the XDR H58 strain). In this work, we used a computational pangenome-based vaccine design technique on all available (n = 119) S. Typhi reference genomes and identified one TonB-dependent siderophore receptor (WP_001034967.1) as highly conserved and prospective vaccine candidates from the predicted core genome (n = 3,351). The applied pan-proteomics and Immunoinformatic approaches help in the identification of four epitopes that may trigger adequate host body immune responses. Furthermore, the proposed vaccine ensemble demonstrates a stable binding conformation with the examined immunological receptor (HLAs and TRL2/4) and has large interaction energy determined via molecular docking and molecular dynamics simulation techniques. Eventually, an expression vector for the Escherichia. coli K12 strain was constructed from the vaccine sequence. Additional analysis revealed that the vaccine may help to elicit strong immune responses for typhoid infections, however, experimental analysis is required to verify the vaccine's effectiveness based on these results. Moreover, the applied computer-assisted vaccine design may considerably decrease vaccine development costs and speed up the process. The study's findings are intriguing, but they must be evaluated in the experimental labs to confirm the developed vaccine's biological efficiency against XDR S. Typhi.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Samiullah Burki
- Department of Pharmacology, Institute of Pharmaceutical Sciences, Jinnah Sindh Medical University, Karachi, Pakistan
| | - Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Hayaa M Alhuthali
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Nahed S Alharthi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
6
|
Benyamini P. Beyond Antibiotics: What the Future Holds. Antibiotics (Basel) 2024; 13:919. [PMID: 39452186 PMCID: PMC11504868 DOI: 10.3390/antibiotics13100919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The prevalence of multidrug resistance (MDR) and stagnant drug-development pipelines have led to the rapid rise of hard-to-treat antibiotic-resistant bacterial infections. These infectious diseases are no longer just nosocomial but are also becoming community-acquired. The spread of MDR has reached a crisis level that needs immediate attention. The landmark O'Neill report projects that by 2050, mortality rates associated with MDR bacterial infections will surpass mortality rates associated with individuals afflicted with cancer. Since conventional antimicrobials are no longer very reliable, it is of great importance to investigate different strategies to combat these life-threatening infectious diseases. Here, we provide an overview of recent advances in viable alternative treatment strategies mainly targeting a pathogen's virulence capability rather than viability. Topics include small molecule and immune inhibition of virulence factors, quorum sensing (QS) quenching, inhibition of biofilm development, bacteriophage-mediated therapy, and manipulation of an individual's macroflora to combat MDR bacterial infections.
Collapse
Affiliation(s)
- Payam Benyamini
- Department of Health Sciences at Extension, University of California Los Angeles, 1145 Gayley Ave., Los Angeles, CA 90024, USA
| |
Collapse
|
7
|
Asad M, Hassan A, Wang W, Alonazi WB, Khan MS, Ogunyemi SO, Ibrahim M, Bin L. An integrated in silico approach for the identification of novel potential drug target and chimeric vaccine against Neisseria meningitides strain 331401 serogroup X by subtractive genomics and reverse vaccinology. Comput Biol Med 2024; 178:108738. [PMID: 38870724 DOI: 10.1016/j.compbiomed.2024.108738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Neisseria meningitidis, commonly known as the meningococcus, leads to substantial illness and death among children and young adults globally, revealing as either epidemic or sporadic meningitis and/or septicemia. In this study, we have designed a novel peptide-based chimeric vaccine candidate against the N. meningitidis strain 331,401 serogroup X. Through rigorous analysis of subtractive genomics, two essential cytoplasmic proteins, namely UPI000012E8E0(UDP-3-O-acyl-GlcNAc deacetylase) and UPI0000ECF4A9(UDP-N-acetylglucosamine acyltransferase) emerged as potential drug targets. Additionally, using reverse vaccinology, the outer membrane protein UPI0001F4D537 (Membrane fusion protein MtrC) identified by subcellular localization and recognized for its known indispensable role in bacterial survival was identified as a novel chimeric vaccine target. Following a careful comparison of MHC-I, MHC-II, T-cell, and B-cell epitopes, three epitopes derived from UPI0001F4D537 were linked with three types of linkers-GGGS, EAAAK, and the essential PADRE-for vaccine construction. This resulted in eight distinct vaccine models (V1-V8). Among them V1 model was selected as the final vaccine construct. It exhibits exceptional immunogenicity, safety, and enhanced antigenicity, with 97.7 % of its residues in the Ramachandran plot's most favored region. Subsequently, the vaccine structure was docked with the TLR4/MD2 complex and six different HLA allele receptors using the HADDOCK server. The docking resulted in the lowest HADDOCK score of 39.3 ± 9.0 for TLR/MD2. Immune stimulation showed a strong immune response, including antibodies creation and the activation of B-cells, T Cytotoxic cells, T Helper cells, Natural Killer cells, and interleukins. Furthermore, the vaccine construct was successfully expressed in the Escherichia coli system by reverse transcription, optimization, and ligation in the pET-28a (+) vector for the expression study. The current study proposes V1 construct has the potential to elicit both cellular and humoral responses, crucial for the developing an epitope-based vaccine against N. meningitidis strain 331,401 serogroup X.
Collapse
Affiliation(s)
- Muhammad Asad
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Ahmad Hassan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan
| | - Weiyu Wang
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Wadi B Alonazi
- Health Administration Department, College of Business Administration, King Saud University, Riyadh, Saudi Arabia
| | | | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Muhammad Ibrahim
- Department of Biosciences, COMSATS University Islamabad, Sahiwal Campus, Pakistan.
| | - Li Bin
- State Key Laboratory of Rice Biology and Breeding, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
8
|
Ahmed MH, Khan K, Tauseef S, Jalal K, Haroon U, Uddin R, Abdellattif MH, Khan A, Al-Harrasi A. Identification of therapeutic drug target of Shigella Flexneri serotype X through subtractive genomic approach and in-silico screening based on drug repurposing. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105611. [PMID: 38823431 DOI: 10.1016/j.meegid.2024.105611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Shigellosis, induced by Shigella flexneri, constitutes a significant health burden in developing nations, particularly impacting socioeconomically disadvantaged communities. Designated as the second most prevalent cause of diarrheal illness by the World Health Organization (WHO), it precipitates an estimated 212,000 fatalities annually. Within the spectrum of S. flexneri strains, serotype X is notably pervasive and resilient, yet its comprehensive characterization remains deficient. The present investigation endeavors to discern potential pharmacological targets and repurpose existing drug compounds against S. flexneri serotype X. Employing the framework of subtractive genomics, the study interrogates the reference genome of S. flexneri Serotype X (strain 2,002,017; UP000001884) to delineate its proteome into categories of non-homologous, non-paralogous, essential, virulent, and resistant constituents, thereby facilitating the identification of therapeutic targets. Subsequently, a screening of approximately 9000 compounds from the FDA library against the identified drug target aims to delineate efficacious agents for combating S. flexneri serotype X infections. The application of subtractive genomics methodology yields prognostic insights, unveiling non-paralogous proteins (n = 4122), non-homologues (n = 1803), essential (n = 1246), drug-like (n = 389), resistant (n = 167), alongside 42 virulent proteins within the reference proteome. This iterative process culminates in the identification of Serine O-acetyltransferase as a viable drug target. Subsequent virtual screening endeavors to unearth FDA-approved medicinal compounds capable of inhibiting Serine O-acetyltransferase. Noteworthy candidates such as DB12983, DB15085, DB16098, DB16185, and DB16262 emerge, exhibiting potential for mitigating S. flexneri Serotype X. Despite the auspicious findings, diligent scrutiny is imperative to ascertain the efficacy and safety profile of the proposed drug candidates vis-à-vis S. flexneri.
Collapse
Affiliation(s)
- Muhammad Hassan Ahmed
- Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST), Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Saba Tauseef
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Pakistan
| | - Urooj Haroon
- Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan.
| | - Magda H Abdellattif
- Chemistry Department, College of Sciences, University College of Taraba, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.
| |
Collapse
|
9
|
Liu L, Cai P, Gu W, Duan X, Gao S, Ma X, Ma Y, Ma S, Li G, Wang X, Cai K, Wang Y, Cai T, Zhao H. Evaluation of vaccine candidates against Rhodococcus equi in BALB/c mice infection model: cellular and humoral immune responses. BMC Microbiol 2024; 24:249. [PMID: 38977999 PMCID: PMC11229254 DOI: 10.1186/s12866-024-03408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Rhodococcus equi (R. equi) is a zoonotic opportunistic pathogen that mainly causes fatal lung and extrapulmonary abscesses in foals and immunocompromised individuals. To date, no commercial vaccine against R. equi exists. We previously screened all potential vaccine candidates from the complete genome of R. equi using a reverse vaccinology approach. Five of these candidates, namely ABC transporter substrate-binding protein (ABC transporter), penicillin-binding protein 2 (PBD2), NlpC/P60 family protein (NlpC/P60), esterase family protein (Esterase), and M23 family metallopeptidase (M23) were selected for the evaluation of immunogenicity and immunoprotective effects in BALB/c mice model challenged with R. equi. The results showed that all five vaccine candidate-immunized mice experienced a significant increase in spleen antigen-specific IFN-γ- and TNF-α-positive CD4 + and CD8 + T lymphocytes and generated robust Th1- and Th2-type immune responses and antibody responses. Two weeks after the R. equi challenge, immunization with the five vaccine candidates reduced the bacterial load in the lungs and improved the pathological damage to the lungs and livers compared with those in the control group. NlpC/P60, Esterase, and M23 were more effective than the ABC transporter and PBD2 in inducing protective immunity against R. equi challenge in mice. In addition, these vaccine candidates have the potential to induce T lymphocyte memory immune responses in mice. In summary, these antigens are effective candidates for the development of protective vaccines against R. equi. The R. equi antigen library has been expanded and provides new ideas for the development of multivalent vaccines.
Collapse
Affiliation(s)
- Lu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Urumqi, China
| | - Peng Cai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Weifang Gu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xingxun Duan
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Shiwen Gao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xuelian Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Urumqi, China
| | - Yuhui Ma
- Zhaosu Xiyu Horse Industry Co., Ltd., Yining, China
| | - Siyuan Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Guoqing Li
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Xiangyu Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Kuojun Cai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Yanfeng Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Tao Cai
- Xinjiang Agricultural Vocational Technical College, Changji, China
| | - Hongqiong Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China.
- Xinjiang Key Laboratory of New Drug Study and Creation for Herbivorous Animal, Urumqi, China.
| |
Collapse
|
10
|
Singh KKB, Salleh MZ, Ahmed N, Yean Yean C, Ismail A. Identification and analysis of immunoreactive proteins of Shigella flexneri in human sera and stool specimens. PeerJ 2024; 12:e17498. [PMID: 38827305 PMCID: PMC11141557 DOI: 10.7717/peerj.17498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/10/2024] [Indexed: 06/04/2024] Open
Abstract
Background The method currently available to diagnose shigellosis is insensitive and has many limitations. Thus, this study was designed to identify specific antigenic protein(s) among the cell surface associated proteins (SAPs) of Shigella that would be valuable in the development of an alternative diagnostic assay for shigellosis, particularly one that could be run using a stool sample rather than serum. Methods The SAPs of clinical isolates of S. dysenteriae, S. boydii, Shigella flexneri, and S. sonnei were extracted from an overnight culture grown at 37 °C using acidified-glycine extraction methods. Protein profiles were observed by SDS-PAGE. To determine if antibodies specific to certain Shigella SAPs were present in both sera and stool suspensions, Western blot analysis was used to detect the presence of IgA, IgG, and IgM. Results Immunoblot analysis revealed that sera from patients infected with S. flexneri recognized 31 proteins. These SAP antigens are recognized by the host humoral response during Shigella infection. Specific antibodies against these antigens were also observed in intestinal secretions of shigellosis patients. Of these 31 S. flexneri proteins, the 35 kDa protein specifically reacted against IgA present in patients' stool suspensions. Further study illustrated the immunoreactivity of this protein in S. dysenteriae, S. boydii, and S. sonnei. This is the first report that demonstrates the presence of immunoreactive Shigella SAPs in stool suspensions. The SAPSs could be very useful in developing a simple and rapid serodiagnostic assay for shigellosis directly from stool specimens.
Collapse
Affiliation(s)
- Kirnpal Kaur Banga Singh
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Mohd Zaki Salleh
- Integrative Pharmacogenomics Institute (iPROMISE), UiTM Puncak Alam Campus, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Chan Yean Yean
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Asma Ismail
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
11
|
Qureshi H, Basheer A, Faheem M, Arshad MW, Rai SK, Jamal SB. Designing a multi-epitope vaccine against Shigella dysenteriae using immuno-informatics approach. Front Genet 2024; 15:1361610. [PMID: 38826807 PMCID: PMC11143797 DOI: 10.3389/fgene.2024.1361610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/08/2024] [Indexed: 06/04/2024] Open
Abstract
Shigella dysenteriae has been recognized as the second most prevalent pathogen associated with diarrhea that contains blood, contributing to 12.9% of reported cases, and it is additionally responsible for approximately 200,000 deaths each year. Currently, there is no S. dysenteriae licensed vaccine. Multidrug resistance in all Shigella spp. is a growing concern. Current vaccines, such as O-polysaccharide (OPS) conjugates, are in clinical trials but are ineffective in children but protective in adults. Thus, innovative treatments and vaccines are needed to combat antibiotic resistance. In this study, we used immuno-informatics to design a new multiepitope vaccine and identified S. dysenteriae strain SD197's membrane protein targets using in-silico methods. The target protein was prioritized using membrane protein topology analysis to find membrane proteins. B and T-cell epitopes were predicted for vaccine formulation. The epitopes were shortlisted based on an IC50 value <50, antigenicity, allergenicity, and a toxicity analysis. In the final vaccine construct, a total of 8 B-cell epitopes, 12 MHC Class I epitopes, and 7 MHC Class II epitopes were identified for the Lipopolysaccharide export system permease protein LptF. Additionally, 17 MHC Class I epitopes and 14 MHC Class II epitopes were predicted for the Lipoprotein-releasing ABC transporter permease subunit LolE. These epitopes were selected and linked via KK, AAY, and GGGS linkers, respectively. To enhance the immunogenic response, RGD (arginine-glycine-aspartate) adjuvant was incorporated into the final vaccine construct. The refined vaccine structure exhibits a Ramachandran score of 91.5% and demonstrates stable interaction with TLR4. Normal Mode Analysis (NMA) reveals low eigenvalues (3.925996e-07), indicating steady and flexible molecular mobility of docked complexes. Codon optimization was carried out in an effective microbial expression system of the Escherichia coli K12 strain using the recombinant plasmid pET-28a (+). Finally, the entire in-silico analysis suggests that the suggested vaccine may induce a significant immune response against S. dysenteriae, making it a promising option for additional experimental trials.
Collapse
Affiliation(s)
- Hurria Qureshi
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Amina Basheer
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Muhammad Faheem
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND, United States
| | - Muhammad Waqar Arshad
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sunil Kumar Rai
- Medical University of the Americas Navis, Charlestown, Saint Kitts and Nevis, West Indies
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| |
Collapse
|
12
|
Qureshi H, Basheer A, Sajjad W, Faheem M, Babar Jamal S. An integrated in-silico approach for drug target identification in human pathogen Shigella dysenteriae. PLoS One 2024; 19:e0303048. [PMID: 38753867 PMCID: PMC11098424 DOI: 10.1371/journal.pone.0303048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024] Open
Abstract
Shigella dysenteriae, is a Gram-negative bacterium that emerged as the second most significant cause of bacillary dysentery. Antibiotic treatment is vital in lowering Shigella infection rates, yet the growing global resistance to broad-spectrum antibiotics poses a significant challenge. The persistent multidrug resistance of S. dysenteriae complicates its management and control. Hence, there is an urgent requirement to discover novel therapeutic targets and potent medications to prevent and treat this disease. Therefore, the integration of bioinformatics methods such as subtractive and comparative analysis provides a pathway to compute the pan-genome of S. dysenteriae. In our study, we analysed a dataset comprising 27 whole genomes. The S. dysenteriae strain SD197 was used as the reference for determining the core genome. Initially, our focus was directed towards the identification of the proteome of the core genome. Moreover, several filters were applied to the core genome, including assessments for non-host homology, protein essentiality, and virulence, in order to prioritize potential drug targets. Among these targets were Integration host factor subunit alpha and Tyrosine recombinase XerC. Furthermore, four drug-like compounds showing potential inhibitory effects against both target proteins were identified. Subsequently, molecular docking analysis was conducted involving these targets and the compounds. This initial study provides the list of novel targets against S. dysenteriae. Conclusively, future in vitro investigations could validate our in-silico findings and uncover potential therapeutic drugs for combating bacillary dysentery infection.
Collapse
Affiliation(s)
- Hurria Qureshi
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
| | - Amina Basheer
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
| | - Wasim Sajjad
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
| | - Muhammad Faheem
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
- Department of Biomedical Sciences, University of North Dakota, School of Medicine and Health Sciences, Grand Forks, ND, United States of America
| | - Syed Babar Jamal
- Department of Biological Sciences, National University of Medical Sciences, Islamabad, Pakistan
| |
Collapse
|
13
|
Ahlawat V, Sura K, Singh B, Dangi M, Chhillar AK. Bioinformatics Approaches in the Development of Antifungal Therapeutics and Vaccines. Curr Genomics 2024; 25:323-333. [PMID: 39323620 PMCID: PMC11420568 DOI: 10.2174/0113892029281602240422052210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/31/2023] [Accepted: 03/11/2024] [Indexed: 09/27/2024] Open
Abstract
Fungal infections are considered a great threat to human life and are associated with high mortality and morbidity, especially in immunocompromised individuals. Fungal pathogens employ various defense mechanisms to evade the host immune system, which causes severe infections. The available repertoire of drugs for the treatment of fungal infections includes azoles, allylamines, polyenes, echinocandins, and antimetabolites. However, the development of multidrug and pandrug resistance to available antimycotic drugs increases the need to develop better treatment approaches. In this new era of -omics, bioinformatics has expanded options for treating fungal infections. This review emphasizes how bioinformatics complements the emerging strategies, including advancements in drug delivery systems, combination therapies, drug repurposing, epitope-based vaccine design, RNA-based therapeutics, and the role of gut-microbiome interactions to combat anti-fungal resistance. In particular, we focused on computational methods that can be useful to obtain potent hits, and that too in a short period.
Collapse
Affiliation(s)
- Vaishali Ahlawat
- Centre for Biotechnology, M.D. University, Rohtak, Haryana, India
- Centre for Bioinformatics, M.D. University, Rohtak, Haryana, India
| | - Kiran Sura
- Centre for Bioinformatics, M.D. University, Rohtak, Haryana, India
| | - Bharat Singh
- Department of Biotechnology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana-133207, India
| | - Mehak Dangi
- Centre for Bioinformatics, M.D. University, Rohtak, Haryana, India
| | | |
Collapse
|
14
|
Alsaiari AA, Hakami MA, Alotaibi BS, Alkhalil SS, Hazazi A, Alkhorayef N, Jalal K, Yasmin F. Rational design of multi-epitope-based vaccine by exploring all dengue virus serotypes proteome: an immunoinformatic approach. Immunol Res 2024; 72:242-259. [PMID: 37880483 DOI: 10.1007/s12026-023-09429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
Millions of people's lives are being devastated by dengue virus (DENV), a severe tropical and subtropical illness spread by mosquitoes and other vectors. Dengue fever may be self-limiting like a common cold or can rapidly progress to catastrophic dengue hemorrhagic fever or dengue shock syndrome. With four distinct dengue serotypes (DENV1-4), each with the potential to contain antibody-boosting complicated mechanisms, developing a dengue vaccine has been an ambitious challenge. Here, we used a computational pan-vaccinomics-based vaccine design strategy (reverse vaccinology) for all 4 DENV serotypes acquired from different regions of the world to develop a new and safe vaccine against DENV. Consequently, only five mapped epitopes from all the 4 serotypes were shown to be extremely effective for the construction of multi-epitope vaccine constructs. The suggested vaccine construct V5 from eight vaccine models was thus classified as an antigenic, non-allergenic, and stable vaccine model. Moreover, molecular docking and molecular dynamics simulation was performed for the V5 vaccine candidate against the HLAs and TRL2 and 4 immunological receptors. Later, the vaccine sequence was transcribed into the cDNA to generate an expression vector for the Escherichia coli K12 strain. Our research suggests that this vaccine design (V5) has promising potential as a dengue vaccine. However, further experimental analysis into the vaccine's efficacy might be required for the V5 proper validation to combat all DENV serotypes.
Collapse
Affiliation(s)
- Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, 15572, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, 15572, Saudi Arabia
| | - Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, 15572, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Kingdom of Saudi Arabia
| | - Nada Alkhorayef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al-Quwayiyah, Shaqra University, Riyadh, 15572, Saudi Arabia
| | - Khurshid Jalal
- H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan.
- Department of Mental Health and Public Health, Faculty of Life and Health Sciences, Shenzhen Institute of Advance Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| | - Farzana Yasmin
- Department of Biomedical Engineering, NED University of Engineering and Technology, Karachi, 75270, Pakistan.
| |
Collapse
|
15
|
Khan A, Khanzada MH, Khan K, Jalal K, Uddin R. Integrating core subtractive proteomics and reverse vaccinology for multi-epitope vaccine design against Rickettsia prowazekii endemic typhus. Immunol Res 2024; 72:82-95. [PMID: 37608125 DOI: 10.1007/s12026-023-09415-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/13/2023] [Indexed: 08/24/2023]
Abstract
Rickettsia prowazekii is an intracellular, obligate, gram-negative coccobacillus responsible for epidemic typhus. Usually, the infected body louse or its excrement when rubbed into the skin abrasions transmits the disease. The infection with R. prowazekii causes the highest death rate (> 20% without antibiotic treatment and now 1-7%), followed by epidemic typhus, which often manifests in unsanitary conditions (up to 15-30%). Conventionally, vaccine design has required pathogen growth and both assays (in vivo and in vitro), which are costly and time-consuming. However, advancements in bioinformatics and computational biology have accelerated the development of effective vaccine designs, reducing the need for traditional, time-consuming laboratory experiments. Subtractive genomics and reverse vaccinology have become prominent computational methods for vaccine model construction. Therefore, the RefSeq sequence of Rickettsia prowazekii (strain Madrid E) (Proteome ID: UP000002480) was subjected to subtractive genomic analysis, including factors such as non-similarity to host proteome, essentiality, subcellular localization, antigenicity, non-allergenicity, and stability. Based on these parameters, the vaccine design process selected specific proteins such as outer membrane protein R (O05971_RICPR PETR; OmpR). Eventually, the OmpR was subjected to a reverse vaccinology approach that included molecular docking, immunological simulation, and the discovery of B-cell epitopes and MHC-I and MHC-II epitopes. Consequently, a chimeric or multi-epitope-based vaccine was proposed by selecting the V11 vaccine and its 3D structure modeling along with molecular docking against TLR and HLA protein, in silico simulation, and vector designing. The obtained results from this investigation resulted in a new perception of inhibitory ways against Rickettsia prowazekii by instigating novel immunogenic targets. To further assess the efficacy and protective ability of the newly designed V11 vaccine against Rickettsia prowazekii infections, additional evaluation such as in vitro or in vivo immunoassays is recommended.
Collapse
Affiliation(s)
- Ariba Khan
- Department of Biotechnology, University of Karachi, Karachi, Pakistan
- Lab 103, PCMD ext. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Hassan Khanzada
- Department of Biotechnology, University of Karachi, Karachi, Pakistan
- Lab 103, PCMD ext. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Kanwal Khan
- Lab 103, PCMD ext. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Reaz Uddin
- Lab 103, PCMD ext. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
16
|
Chakraborty S, Askari M, Barai RS, Idicula‐Thomas S. PBIT V3 : A robust and comprehensive tool for screening pathogenic proteomes for drug targets and prioritizing vaccine candidates. Protein Sci 2024; 33:e4892. [PMID: 38168465 PMCID: PMC10804677 DOI: 10.1002/pro.4892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Rise of life-threatening superbugs, pandemics and epidemics warrants the need for cost-effective and novel pharmacological interventions. Availability of publicly available proteomes of pathogens supports development of high-throughput discovery platforms to prioritize potential drug-targets and develop testable hypothesis for pharmacological screening. The pipeline builder for identification of target (PBIT) was developed in 2016 and updated in 2021, with the purpose of accelerating the search for drug-targets by integration of methods like comparative and subtractive genomics, essentiality/virulence and druggability analysis. Since then, it has been used for identification of drugs and vaccine targets, safety profiling of multiepitope vaccines and mRNA vaccine construction against a broad-spectrum of pathogens. This tool has now been updated with functionalities related to systems biology and immuno-informatics and validated by analyzing 48 putative antigens of Mycobacterium tuberculosis documented in literature. PBITv3 available as both online and offline tools will enhance drug discovery against emerging drug-resistant infectious agents. PBITv3 can be freely accessed at http://pbit.bicnirrh.res.in/.
Collapse
Affiliation(s)
- Shuvechha Chakraborty
- Biomedical Informatics Centre, ICMR‐National Institute for Research in Reproductive and Child HealthMumbaiMaharashtraIndia
| | - Mehdi Askari
- Department of BioinformaticsGuru Nanak Khalsa College, Nathalal Parekh MargMumbaiMaharashtraIndia
| | - Ram Shankar Barai
- Biological Sciences DivisionICMR‐National Institute of Occupational HealthAhmedabadGujratIndia
| | - Susan Idicula‐Thomas
- Biomedical Informatics Centre, ICMR‐National Institute for Research in Reproductive and Child HealthMumbaiMaharashtraIndia
| |
Collapse
|
17
|
Shah M, Jaan S, Shehroz M, Sarfraz A, Asad K, Wara TU, Zaman A, Ullah R, Ali EA, Nishan U, Ojha SC. Deciphering the Immunogenicity of Monkeypox Proteins for Designing the Potential mRNA Vaccine. ACS OMEGA 2023; 8:43341-43355. [PMID: 38024731 PMCID: PMC10652822 DOI: 10.1021/acsomega.3c07866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023]
Abstract
The Monkeypox virus (MPXV), an orthopox virus, is responsible for monkeypox in humans, a zoonotic disease similar to smallpox. This infection first appeared in the 1970s in humans and then in 2003, after which it kept on spreading all around the world. To date, various antivirals have been used to cure this disease, but now, MPXV has developed resistance against these, thus increasing the need for an alternative cure for this deadly disease. In this study, we devised a reverse vaccinology approach against MPXV using a messenger RNA (mRNA) vaccine by pinning down the antigenic proteins of this virus. By using bioinformatic tools, we predicted prospective immunogenic B and T lymphocyte epitopes. Based on cytokine inducibility score, nonallergenicity, nontoxicity, antigenicity, and conservancy, the final epitopes were selected. Our analysis revealed the stable structure of the mRNA vaccine and its efficient expression in host cells. Furthermore, strong interactions were demonstrated with toll-like receptors 2 (TLR2) and 4 (TLR4) according to the molecular dynamic simulation studies. The in silico immune simulation analyses revealed an overall increase in the immune responses following repeated exposure to the designed vaccine. Based on our findings, the vaccine candidate designed in this study has the potential to be tested as a promising novel mRNA therapeutic vaccine against MPXV infection.
Collapse
Affiliation(s)
- Mohibullah Shah
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Samavia Jaan
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
- School
of Biochemistry and Biotechnology, University
of the Punjab, Lahore 54590, Pakistan
| | - Muhammad Shehroz
- Department
of Bioinformatics, Kohsar University Murree, Murree 47150 Pakistan
| | - Asifa Sarfraz
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Khamna Asad
- School
of Biochemistry and Biotechnology, University
of the Punjab, Lahore 54590, Pakistan
| | - Tehreem Ul Wara
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Aqal Zaman
- Department
of Microbiology & Molecular Genetics, Bahauddin Zakariya University, Multan 66000, Pakistan
| | - Riaz Ullah
- Department
of Pharmacognosy, College of Pharmacy, King
Saud University Riyadh 11451, Saudi Arabia
| | - Essam A. Ali
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Umar Nishan
- Department
of Chemistry, Kohat University of Science
& Technology, Kohat 26000, Pakistan
| | - Suvash Chandra Ojha
- Department
of Infectious Diseases, The Affiliated Hospital
of Southwest Medical University, 646000 Luzhou, China
| |
Collapse
|
18
|
Maritz-Olivier C, Ferreira M, Olivier NA, Crafford J, Stutzer C. Mining gene expression data for rational identification of novel drug targets and vaccine candidates against the cattle tick, Rhipicephalus microplus. EXPERIMENTAL & APPLIED ACAROLOGY 2023; 91:291-317. [PMID: 37755526 PMCID: PMC10562289 DOI: 10.1007/s10493-023-00838-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023]
Abstract
Control of complex parasites via vaccination remains challenging, with the current combination of vaccines and small drugs remaining the choice for an integrated control strategy. Studies conducted to date, are providing evidence that multicomponent vaccines will be needed for the development of protective vaccines against endo- and ectoparasites, though multicomponent vaccines require an in-depth understanding of parasite biology which remains insufficient for ticks. With the rapid development and spread of acaricide resistance in ticks, new targets for acaricide development also remains to be identified, along with novel targets that can be exploited for the design of lead compounds. In this study, we analysed the differential gene expression of Rhipicephalus microplus ticks that were fed on cattle vaccinated with a multi-component vaccine (Bm86 and 3 putative Bm86-binding proteins). The data was scrutinised for the identification of vaccine targets, small drug targets and novel pathways that can be evaluated in future studies. Limitations associated with targeting novel proteins for vaccine and/or drug design is also discussed and placed into the context of challenges arising when targeting large protein families and intracellular localised proteins. Lastly, this study provide insight into how Bm86-based vaccines may reduce successful uptake and digestion of the bloodmeal and overall tick fecundity.
Collapse
Affiliation(s)
- Christine Maritz-Olivier
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa.
| | - Mariëtte Ferreira
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Nicholas A Olivier
- DNA Microarray Laboratory, Department of Plant Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Jan Crafford
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, Gauteng, South Africa
| | - Christian Stutzer
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, Gauteng, South Africa.
| |
Collapse
|
19
|
Fereshteh S, Haririzadeh Jouriani F, Noori Goodarzi N, Torkamaneh M, Khasheii B, Badmasti F. Defeating a superbug: A breakthrough in vaccine design against multidrug-resistant Pseudomonas aeruginosa using reverse vaccinology. PLoS One 2023; 18:e0289609. [PMID: 37535697 PMCID: PMC10399887 DOI: 10.1371/journal.pone.0289609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 07/22/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND Multidrug-resistant Pseudomonas aeruginosa has become a major cause of severe infections. Due to the lack of approved vaccines, this study has presented putative vaccine candidates against it. METHODS P. aeruginosa 24Pae112 as a reference strain was retrieved from GenBank database. The surface-exposed, antigenic, non-allergenic, and non-homologous human proteins were selected. The conserved domains of selected proteins were evaluated, and the prevalence of proteins was assessed among 395 genomes. Next, linear and conformational B-cell epitopes, and human MHC II binding sites were determined. Finally, five conserved and highly antigenic B-cell epitopes from OMPs were implanted on the three platforms as multi-epitope vaccines, including FliC, the bacteriophage T7 tail, and the cell wall-associated transporter proteins. The immunoreactivity was investigated using molecular docking and immune simulation. Furthermore, molecular dynamics simulation was done to refine the chimeric cell-wall-associated transporter-TLR4 complex as the best interaction. RESULTS Among 6494 total proteins of P. aeruginosa 24Pae112, 16 proteins (seven OMPs and nine secreted) were ideal according to the defined criteria. These proteins had a molecular weight of 110 kDa and were prevalent in ≥ 75% of P. aeruginosa genomes. Among the presented multi-epitope vaccines, the chimeric cell-wall-associated transporter had the strongest interaction with TLR4. Moreover, the immune simulation response revealed that the bacteriophage T7 tail chimeric protein had the strongest ability to stimulate the immune system. In addition, molecular docking and molecular dynamic simulation indicated the proper and stable interactions between the chimeric cell-wall-associated transporter and TLR4. CONCLUSION This study proposed 16 shortlisted proteins as promising immunogenic targets. Two novel platforms (e.g. cell-wall-associated transporter and bacteriophage T7 tail proteins) for designing of multi-epitope vaccines (MEVs), showed the better performance compared to FliC. In our future studies, these two MEVs will receive more scrutiny to evaluate their immunoreactivity.
Collapse
Affiliation(s)
| | | | - Narjes Noori Goodarzi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Torkamaneh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Behnoush Khasheii
- Department of Pathobiology, Faculty of Veterinary Science, Bu-Ali Sina University, Hamedan, Iran
| | - Farzad Badmasti
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
20
|
Liu L, Yu W, Cai K, Ma S, Wang Y, Ma Y, Zhao H. Identification of vaccine candidates against rhodococcus equi by combining pangenome analysis with a reverse vaccinology approach. Heliyon 2023; 9:e18623. [PMID: 37576287 PMCID: PMC10413060 DOI: 10.1016/j.heliyon.2023.e18623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
Rhodococcus equi (R. equi) is a zoonotic opportunistic pathogen that can cause life-threatening infections. The rapid evolution of multidrug-resistant R. equi and the fact that there is no currently licensed effective vaccine against R. equi warrant the need for vaccine development. Reverse vaccinology (RV), which involves screening a pathogen's entire genome and proteome using various web-based prediction tools, is considered one of the most effective approaches for identifying vaccine candidates. Here, we performed a pangenome analysis to determine the core proteins of R. equi. We then used the RV approach to examine the subcellular localization, host and gut flora homology, antigenicity, transmembrane helices, physicochemical properties, and immunogenicity of the core proteins to select potential vaccine candidates. The vaccine candidates were then subjected to epitope mapping to predict the exposed antigenic epitopes that possess the ability to bind with major histocompatibility complex I/II (MHC I/II) molecules. These vaccine candidates and epitopes will form a library of elements for the development of a polyvalent or universal vaccine against R. equi. Sixteen R. equi complete proteomes were found to contain 6,238 protein families, and the core proteins consisted of 3,969 protein families (∼63.63% of the pangenome), reflecting a low degree of intraspecies genomic variability. From the pool of core proteins, 483 nonhost homologous membrane and extracellular proteins were screened, and 12 vaccine candidates were finally identified according to their antigenicity, physicochemical properties and other factors. These included four cell wall/membrane/envelope biogenesis proteins; four amino acid transport and metabolism proteins; one cell cycle control, cell division and chromosome partitioning protein; one carbohydrate transport and metabolism protein; one secondary metabolite biosynthesis, transport and catabolism protein; and one defense mechanism protein. All 12 vaccine candidates have an experimentally validated 3D structure available in the protein data bank (PDB). Epitope mapping of the candidates showed that 16 MHC I epitopes and 13 MHC II epitopes with the strongest immunogenicity were exposed on the protein surface, indicating that they could be used to develop a polypeptide vaccine. Thus, we utilized an analytical strategy that combines pangenome analysis and RV to generate a peptide antigen library that simplifies the development of multivalent or universal vaccines against R. equi and can be applied to the development of other vaccines.
Collapse
Affiliation(s)
- Lu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Wanli Yu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Kuojun Cai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Siyuan Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Yanfeng Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Yuhui Ma
- Zhaosu Xiyu Horse Industry Co., Ltd. Zhaosu County 835699, Yili Prefecture, Xinjiang, China
| | - Hongqiong Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| |
Collapse
|
21
|
Comparative Genomics of Histoplasma capsulatum and Prediction of New Vaccines and Drug Targets. J Fungi (Basel) 2023; 9:jof9020193. [PMID: 36836308 PMCID: PMC9963733 DOI: 10.3390/jof9020193] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Histoplasma capsulatum is a thermodymorphic fungus that causes histoplasmosis, a systemic mycosis that presents different clinical manifestations, ranging from self-limiting to acute lung infection, chronic lung infection and disseminated infection. Usually, it affects severely immunocompromised patients although immunocompetent patients can also be infected. Currently, there are no vaccines to prevent histoplasmosis and the available antifungal treatment presents moderate to high toxicity. Additionally, there are few options of antifungal drugs. Thus, the aim of this study was to predict possible protein targets for the construction of potential vaccine candidates and predict potential drug targets against H. capsulatum. Whole genome sequences from four previously published H. capsulatum strains were analyzed and submitted to different bioinformatic approaches such as reverse vaccinology and subtractive genomics. A total of four proteins were characterized as good protein candidates (vaccine antigens) for vaccine development, three of which are membrane-bound and one is secreted. In addition, it was possible to predict four cytoplasmic proteins which were classified as good protein candidates and, through molecular docking performed for each identified target, we found four natural compounds that showed favorable interactions with our target proteins. Our study can help in the development of potential vaccines and new drugs that can change the current scenario of the treatment and prevention of histoplasmosis.
Collapse
|
22
|
Jalal K, Khan K, Uddin R. Immunoinformatic-guided designing of multi-epitope vaccine construct against Brucella Suis 1300. Immunol Res 2022; 71:247-266. [PMID: 36459272 PMCID: PMC9716126 DOI: 10.1007/s12026-022-09346-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022]
Abstract
Brucella suis mediates the transmission of brucellosis in humans and animals and a significant facultative zoonotic pathogen found in livestock. It has the capacity to survive and multiply in a phagocytic environment and to acquire resistance under hostile conditions thus becoming a threat globally. Antibiotic resistance is posing a substantial public health threat, hence there is an unmet and urgent clinical need for immune-based non-antibiotic methods to treat brucellosis. Hence, we aimed to explore the whole proteome of Brucella suis to predict antigenic proteins as a vaccine target and designed a novel chimeric vaccine (multi-epitope vaccine) through subtractive genomics-based reverse vaccinology approaches. The applied subsequent hierarchical shortlisting resulted in the identification of Multidrug efflux Resistance-nodulation-division (RND) transporter outer membrane subunit (gene BepC) that may act as a potential vaccine target. T-cell and B-cell epitopes have been predicted from target proteins using a number of immunoinformatic methods. Six MHC I, ten MHC II, and four B-cell epitopes were used to create a 324-amino-acid MEV construct, which was coupled with appropriate linkers and adjuvant. To boost the immunological response to the vaccine, the vaccine was combined with the TLR4 agonist HBHA protein. The MEV structure predicted was found to be highly antigenic, non-toxic, non-allergenic, flexible, stable, and soluble. To confirm the interactions with the receptors, a molecular docking simulation of the MEV was done using the human TLR4 (toll-like receptor 4) and HLAs. The stability and binding of the MEV-docked complexes with TLR4 were assessed using molecular dynamics (MD) simulation. Finally, MEV was reverse translated, its cDNA structure was evaluated, and then, in silico cloning into an E. coli expression host was conducted to promote maximum vaccine protein production with appropriate post-translational modifications. These comprehensive computer calculations backed up the efficacy of the suggested MEV in protecting against B. suis infections. However, more experimental validations are needed to adequately assess the vaccine candidate's potential. HIGHLIGHTS: • Subtractive genomic analysis and reverse vaccinology for the prioritization of novel vaccine target • Examination of chimeric vaccine in terms of allergenicity, antigenicity, MHC I, II binding efficacy, and structural-based studies • Molecular docking simulation method to rank based vaccine candidate and understand their binding modes.
Collapse
Affiliation(s)
- Khurshid Jalal
- HEJ Research Institute of Chemistry International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Kanwal Khan
- Lab 103 PCMD Ext. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Reaz Uddin
- Lab 103 PCMD Ext. Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
23
|
Wang C, Mantilla-Calderon D, Xiong Y, Alkahtani M, Bashawri YM, Al Qarni H, Hong PY. Investigation of Antibiotic Resistome in Hospital Wastewater during the COVID-19 Pandemic: Is the Initial Phase of the Pandemic Contributing to Antimicrobial Resistance? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15007-15018. [PMID: 35918059 PMCID: PMC9397564 DOI: 10.1021/acs.est.2c01834] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 07/12/2022] [Indexed: 06/01/2023]
Abstract
Since the COVID-19 pandemic started, there has been much speculation about how COVID-19 and antimicrobial resistance may be interconnected. In this study, untreated wastewater was sampled from Hospital A designated to treat COVID-19 patients during the first wave of the COVID-19 pandemic alongside Hospital B that did not receive any COVID-19 patients. Metagenomics was used to determine the relative abundance and mobile potential of antibiotic resistant genes (ARGs), prior to determining the correlation of ARGs with time/incidence of COVID-19. Our findings showed that ARGs resistant to macrolides, sulfonamides, and tetracyclines were positively correlated with time in Hospital A but not in Hospital B. Likewise, minor extended spectrum beta-lactamases (ESBLs) and carbapenemases of classes B and D were positively correlated with time, suggesting the selection of rare and/or carbapenem-resistant genes in Hospital A. Non-carbapenemase blaVEB also positively correlated with both time and intI1 and was copresent with other ARGs including carbapenem-resistant genes in 6 metagenome-assembled genomes (MAGs). This study highlighted concerns related to the dissemination of antimicrobial resistance (AMR) during the COVID-19 pandemic that may arise from antibiotic use and untreated hospital wastewater.
Collapse
Affiliation(s)
- Changzhi Wang
- Bioengineering
Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi
Arabia
- Water
Desalination and Reuse Center, Division of Biological and Environmental
Science and Engineering, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - David Mantilla-Calderon
- Water
Desalination and Reuse Center, Division of Biological and Environmental
Science and Engineering, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Yanghui Xiong
- Environmental
Science and Engineering, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom
of Saudi Arabia
- Water
Desalination and Reuse Center, Division of Biological and Environmental
Science and Engineering, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Mohsen Alkahtani
- Environmental
Health Laboratory, Ministry of Health, P.O. Box 34496, Jeddah 21468, Saudi Arabia
| | - Yasir M. Bashawri
- General
Directorate of Environment Health, Ministry
of Health, P.O. Box 2903, Riyadh 11461, Saudi Arabia
| | - Hamed Al Qarni
- General
Directorate of Environment Health, Ministry
of Health, P.O. Box 2903, Riyadh 11461, Saudi Arabia
| | - Pei-Ying Hong
- Bioengineering
Program, Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom of Saudi
Arabia
- Environmental
Science and Engineering, Biological and Environmental Science and
Engineering Division, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom
of Saudi Arabia
- Water
Desalination and Reuse Center, Division of Biological and Environmental
Science and Engineering, King Abdullah University
of Science and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| |
Collapse
|
24
|
Basharat Z, Khan K, Jalal K, Alnasser SM, Majeed S, Zehra M. Inferring Therapeutic Targets in Candida albicans and Possible Inhibition through Natural Products: A Binding and Physiological Based Pharmacokinetics Snapshot. Life (Basel) 2022; 12:1743. [PMID: 36362898 PMCID: PMC9692583 DOI: 10.3390/life12111743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/12/2022] [Accepted: 10/27/2022] [Indexed: 09/10/2024] Open
Abstract
Despite being responsible for invasive infections, fungal pathogens have been underrepresented in computer aided therapeutic target mining and drug design. Excess of Candida albicans causes candidiasis, causative of thrush and vaginal infection due to off-balance. In this study, we attempted to mine drug targets (n = 46) using a subtractive proteomic approach in this pathogenic yeast and screen natural products with inhibition potential against fructose-bisphosphate aldolase (FBA) of the C. albicans. The top compound selected on the basis of best docking score from traditional Indian medicine/Ayurvedic library was (4-Hydroxybenzyl)thiocarbamic acid, from the ZINC FBA inhibitor library was ZINC13507461 (IUPAC name: [(2R)-2-hydroxy-3-phosphonooxypropyl] (9E,12E)-octadeca-9,12-dienoate), and from traditional Tibetan medicine/Sowa rigpa was Chelerythrine (IUPAC name: 1,2-Dimethoxy-12-methyl-9H-[1,3]benzodioxolo[5,6-c]phenanthridin-12-ium), compared to the control (2E)-1-(4-nitrophenyl)-2-[(4-nitrophenyl)methylidene]hydrazine. No Ames toxicity was predicted for prioritized compounds while control depicted this toxicity. (4-Hydroxybenzyl)thiocarbamic acid showed hepatotoxicity, while Chelerythrine depicted hERG inhibition, which can lead to QT syndrome, so we recommend ZINC13507461 for further testing in lab. Pharmacological based pharmacokinetic modeling revealed that it has low bioavailability and hence, absorption in healthy state. In cirrhosis and renal impairment, absorption and plasma accumulation increased so we recommend further investigation into this occurrence and recommend high dosage in further tests to increase bioavailability.
Collapse
Affiliation(s)
- Zarrin Basharat
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Sulaiman Mohammed Alnasser
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, Buraydah 52571, Saudi Arabia
| | - Sania Majeed
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Marium Zehra
- Jamil–ur–Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
25
|
Genome-Based Multi-Antigenic Epitopes Vaccine Construct Designing against Staphylococcus hominis Using Reverse Vaccinology and Biophysical Approaches. Vaccines (Basel) 2022; 10:vaccines10101729. [PMID: 36298594 PMCID: PMC9611379 DOI: 10.3390/vaccines10101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Staphylococcus hominis is a Gram-positive bacterium from the staphylococcus genus; it is also a member of coagulase-negative staphylococci because of its opportunistic nature and ability to cause life-threatening bloodstream infections in immunocompromised patients. Gram-positive and opportunistic bacteria have become a major concern for the medical community. It has also drawn the attention of scientists due to the evaluation of immune evasion tactics and the development of multidrug-resistant strains. This prompted the need to explore novel therapeutic approaches as an alternative to antibiotics. The current study aimed to develop a broad-spectrum, multi-epitope vaccine to control bacterial infections and reduce the burden on healthcare systems. A computational framework was designed to filter the immunogenic potent vaccine candidate. This framework consists of pan-genomics, subtractive proteomics, and immunoinformatics approaches to prioritize vaccine candidates. A total of 12,285 core proteins were obtained using a pan-genome analysis of all strains. The screening of the core proteins resulted in the selection of only two proteins for the next epitope prediction phase. Eleven B-cell derived T-cell epitopes were selected that met the criteria of different immunoinformatics approaches such as allergenicity, antigenicity, immunogenicity, and toxicity. A vaccine construct was formulated using EAAAK and GPGPG linkers and a cholera toxin B subunit. This formulated vaccine construct was further used for downward analysis. The vaccine was loop refined and improved for structure stability through disulfide engineering. For an efficient expression, the codons were optimized as per the usage pattern of the E coli (K12) expression system. The top three refined docked complexes of the vaccine that docked with the MHC-I, MHC-II, and TLR-4 receptors were selected, which proved the best binding potential of the vaccine with immune receptors; this was followed by molecular dynamic simulations. The results indicate the best intermolecular bonding between immune receptors and vaccine epitopes and that they are exposed to the host’s immune system. Finally, the binding energies were calculated to confirm the binding stability of the docked complexes. This work aimed to provide a manageable list of immunogenic and antigenic epitopes that could be used as potent vaccine candidates for experimental in vivo and in vitro studies.
Collapse
|
26
|
Subtractive genomics profiling for potential drug targets identification against Moraxella catarrhalis. PLoS One 2022; 17:e0273252. [PMID: 36006987 PMCID: PMC9409589 DOI: 10.1371/journal.pone.0273252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/04/2022] [Indexed: 01/12/2023] Open
Abstract
Moraxella catarrhalis (M. catarrhalis) is a gram-negative bacterium, responsible for major respiratory tract and middle ear infection in infants and adults. The recent emergence of the antibiotic resistance M. catarrhalis demands the prioritization of an effective drug target as a top priority. Fortunately, the failure of new drugs and host toxicity associated with traditional drug development approaches can be avoided by using an in silico subtractive genomics approach. In the current study, the advanced in silico genome subtraction approach was applied to identify potential and pathogen-specific drug targets against M. catarrhalis. We applied a series of subtraction methods from the whole genome of pathogen based on certain steps i.e. paralogous protein that have extensive homology with humans, essential, drug like, non-virulent, and resistant proteins. Only 38 potent drug targets were identified in this study. Eventually, one protein was identified as a potential new drug target and forwarded to the structure-based studies i.e. histidine kinase (UniProt ID: D5VAF6). Furthermore, virtual screening of 2000 compounds from the ZINC database was performed against the histidine kinase that resulted in the shortlisting of three compounds as the potential therapeutic candidates based on their binding energies and the properties exhibited using ADMET analysis. The identified protein gives a platform for the discovery of a lead drug candidate that may inhibit it and may help to eradicate the otitis media caused by drug-resistant M. catarrhalis. Nevertheless, the current study helped in creating a pipeline for drug target identification that may assist wet-lab research in the future.
Collapse
|
27
|
Jalal K, Khan K, Basharat Z, Abbas MN, Uddin R, Ali F, Khan SA, Hassan SSU. Reverse vaccinology approach for multi-epitope centered vaccine design against delta variant of the SARS-CoV-2. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60035-60053. [PMID: 35414157 PMCID: PMC9005162 DOI: 10.1007/s11356-022-19979-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/25/2022] [Indexed: 06/01/2023]
Abstract
The ongoing COVID-19 outbreak, initially identified in Wuhan, China, has impacted people all over the globe and new variants of concern continue to threaten hundreds of thousands of people. The delta variant (first reported in India) is currently classified as one of the most contagious variants of SARS-CoV-2. It is estimated that the transmission rate of delta variant is 225% times faster than the alpha variant, and it is causing havoc worldwide (especially in the USA, UK, and South Asia). The mutations found in the spike protein of delta variant make it more infective than other variants in addition to ruining the global efficacy of available vaccines. In the current study, an in silico reverse vaccinology approach was applied for multi-epitope vaccine construction against the spike protein of delta variant, which could induce an immune response against COVID-19 infection. Non-toxic, highly conserved, non-allergenic and highly antigenic B-cell, HTL, and CTL epitopes were identified to minimize adverse effects and maximize the efficacy of chimeric vaccines that could be developed from these epitopes. Finally, V1 vaccine construct model was shortlisted and 3D modeling was performed by refinement, docking against HLAs and TLR4 protein, simulation and in silico expression. In silico evaluation showed that the designed chimeric vaccine could elicit an immune response (i.e., cell-mediated and humoral) identified through immune simulation. This study could add to the efforts of overcoming global burden of COVID-19 particularly the variants of concern.
Collapse
Affiliation(s)
- Khurshid Jalal
- International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi, Pakistan
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Zarrin Basharat
- Jamil-ur-Rahman Center for Genome Research, Dr. Panjwani Center for Molecular Medicine and Drug Research, ICCBS University of Karachi, Karachi, Pakistan
| | | | - Reaz Uddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan.
| | - Fawad Ali
- Department of Pharmacy, KUST, Khyber Pakhtunkhwa, Kohat, 26000, Pakistan
| | - Saeed Ahmad Khan
- Department of Pharmacy, KUST, Khyber Pakhtunkhwa, Kohat, 26000, Pakistan
| | - Syed Shams Ul Hassan
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
- Department of Natural Product Chemistry, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
28
|
Alotaibi G, Khan K, Al Mouslem AK, Ahmad Khan S, Naseer Abbas M, Abbas M, Ali Shah S, Jalal K. Pan Genome Based Reverse Vaccinology Approach to Explore Enterococcus Faecium (VRE) Strains for Identification of Novel Multi-Epitopes Vaccine Candidate. Immunobiology 2022; 227:152221. [DOI: 10.1016/j.imbio.2022.152221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/24/2022] [Accepted: 04/15/2022] [Indexed: 11/05/2022]
|