1
|
Iyaniwura SA, Cassidy T, Ribeiro RM, Perelson AS. A multiscale model of the action of a capsid assembly modulator for the treatment of chronic hepatitis B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.16.603658. [PMID: 39071423 PMCID: PMC11275877 DOI: 10.1101/2024.07.16.603658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Chronic hepatitis B virus (HBV) infection is strongly associated with increased risk of liver cancer and cirrhosis. While existing treatments effectively inhibit the HBV life cycle, viral rebound occurs rapidly following treatment interruption. Consequently, functional cure rates of chronic HBV infection remain low and there is increased interest in a novel treatment modality, capsid assembly modulators (CAMs). Here, we develop a multiscale mathematical model of CAM treatment in chronic HBV infection. By fitting the model to participant data from a phase I trial of the first-generation CAM vebicorvir, we estimate the drug's dose-dependent effectiveness and identify the physiological mechanisms that drive the observed biphasic decline in HBV DNA and RNA, and mechanistic differences between HBeAg-positive and negative infection. Finally, we demonstrate analytically and numerically that HBV RNA is more sensitive than HBV DNA to increases in CAM effectiveness.
Collapse
Affiliation(s)
- Sarafa A. Iyaniwura
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Tyler Cassidy
- School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| |
Collapse
|
2
|
Kitagawa K, Kim KS, Iwamoto M, Hayashi S, Park H, Nishiyama T, Nakamura N, Fujita Y, Nakaoka S, Aihara K, Perelson AS, Allweiss L, Dandri M, Watashi K, Tanaka Y, Iwami S. Multiscale modeling of HBV infection integrating intra- and intercellular viral propagation for analyzing extracellular viral markers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543822. [PMID: 37333409 PMCID: PMC10274663 DOI: 10.1101/2023.06.06.543822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Chronic infection of hepatitis B virus (HBV) is caused by the persistence of closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. Despite available therapeutic anti-HBV agents, eliminating the cccDNA remains challenging. The quantifying and understanding dynamics of cccDNA are essential for developing effective treatment strategies and new drugs. However, it requires a liver biopsy to measure the intrahepatic cccDNA, which is basically not accepted because of the ethical aspect. We here aimed to develop a non-invasive method for quantifying cccDNA in the liver using surrogate markers present in peripheral blood. We constructed a multiscale mathematical model that explicitly incorporates both intracellular and intercellular HBV infection processes. The model, based on age-structured partial differential equations (PDEs), integrates experimental data from in vitro and in vivo investigations. By applying this model, we successfully predicted the amount and dynamics of intrahepatic cccDNA using specific viral markers in serum samples, including HBV DNA, HBsAg, HBeAg, and HBcrAg. Our study represents a significant step towards advancing the understanding of chronic HBV infection. The non-invasive quantification of cccDNA using our proposed methodology holds promise for improving clinical analyses and treatment strategies. By comprehensively describing the interactions of all components involved in HBV infection, our multiscale mathematical model provides a valuable framework for further research and the development of targeted interventions.
Collapse
Affiliation(s)
- Kosaku Kitagawa
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Kwang Su Kim
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
- Department of Scientific Computing, Pukyong National University; Busan, South Korea
| | - Masashi Iwamoto
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
- Department of Virology II, National Institute of Infectious Diseases; Tokyo, Japan
| | - Sanae Hayashi
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University; Kumamoto, Japan
| | - Hyeongki Park
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Takara Nishiyama
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Naotoshi Nakamura
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Yasuhisa Fujita
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
| | - Shinji Nakaoka
- Faculty of Advanced Life Science, Hokkaido University; Sapporo, Japan
| | - Kazuyuki Aihara
- International Research Center for Neurointelligence, The University of Tokyo Institutes for Advanced Study, The University of Tokyo; Tokyo, Japan
| | - Alan S. Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory; Los Alamos, USA
| | - Lena Allweiss
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf; Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites; Germany
| | - Maura Dandri
- Department of Internal Medicine, University Medical Center Hamburg-Eppendorf; Hamburg, Germany
- German Center for Infection Research (DZIF), Hamburg-Lübeck-Borstel-Riems partner sites; Germany
| | - Koichi Watashi
- Department of Virology II, National Institute of Infectious Diseases; Tokyo, Japan
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases; Tokyo, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences; Chiba, Japan
| | - Yasuhito Tanaka
- Department of Gastroenterology and Hepatology, Faculty of Life Sciences, Kumamoto University; Kumamoto, Japan
| | - Shingo Iwami
- interdisciplinary Biology Laboratory (iBLab), Division of Natural Science, Graduate School of Science, Nagoya University; Nagoya, Japan
- Department of Applied Biological Sciences, Faculty of Science and Technology, Tokyo University of Sciences; Chiba, Japan
- Institute of Mathematics for Industry, Kyushu University; Fukuoka, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University; Kyoto, Japan
- NEXT-Ganken Program, Japanese Foundation for Cancer Research (JFCR); Tokyo, Japan
- Science Groove Inc.; Fukuoka, Japan
| |
Collapse
|
3
|
El Messaoudi S, Lemenuel-Diot A, Gonçalves A, Guedj J. A Semi-mechanistic Model to Characterize the Long-Term Dynamics of Hepatitis B Virus Markers During Treatment With Lamivudine and Pegylated Interferon. Clin Pharmacol Ther 2023; 113:390-400. [PMID: 36408671 DOI: 10.1002/cpt.2798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022]
Abstract
Antiviral treatments against hepatitis B virus (HBV) suppress viral replication but do not eradicate the virus, and need therefore to be taken lifelong to avoid relapse. Mathematical models can be useful to support the development of curative anti-HBV agents; however, they mostly focus on short-term HBV DNA data and neglect the complex host-pathogen interaction. This work aimed to characterize the effect of treatment with lamivudine and/or pegylated interferon (Peg-IFN) in 1,300 patients (hepatitis B envelope antigen (HBeAg)-positive and HBeAg-negative) treated for 1 year. A mathematical model was developed incorporating two populations of infected cells, namely I 1 , with a high transcriptional activity, that progressively evolve into I 2 , at a rate δ tr , representing cells with integrated HBV DNA that have a lower transcriptional activity. Parameters of the model were estimated in patients treated with lamivudine or Peg-IFN alone (N = 894), and the model was then validated in patients treated with lamivudine plus Peg-IFN (N = 436) to predict the virological response after a year of combination treatment. Lamivudine had a larger effect in blocking viral production than Peg-IFN (99.4-99.9% vs. 91.8-95.1%); however, Peg-IFN had a significant immunomodulatory effect, leading to an enhancement of the loss rates of I 1 (×1.7 in HBeAg-positive patients), I 2 (> ×7 irrespective of HBeAg status), and δ tr (×4.6 and ×2.0 in HBeAg-positive and HBeAg-negative patients, respectively). Using this model, we were able to describe the synergy of the different effects occurring during treatment with combination and predicted an effect of 99.99% on blocking viral production. This framework can therefore support the optimization of combination therapy with new anti-HBV agents.
Collapse
Affiliation(s)
- Selma El Messaoudi
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, Infection, Antimicrobials, Modelling, Evolution, Paris, France
| | - Annabelle Lemenuel-Diot
- Pharmaceutical Sciences, Roche Pharmaceutical Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Antonio Gonçalves
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, Infection, Antimicrobials, Modelling, Evolution, Paris, France
| | - Jérémie Guedj
- Université Paris Cité, Institut National de la Santé et de la Recherche Médicale, Infection, Antimicrobials, Modelling, Evolution, Paris, France
| |
Collapse
|
4
|
Patel N, Abulwerdi F, Fatehi F, Manfield IW, Le Grice S, Schneekloth JS, Twarock R, Stockley PG. Dysregulation of Hepatitis B Virus Nucleocapsid Assembly in vitro by RNA-binding Small Ligands. J Mol Biol 2022; 434:167557. [PMID: 35341740 PMCID: PMC7612645 DOI: 10.1016/j.jmb.2022.167557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 12/12/2022]
Abstract
RNA sequences/motifs dispersed across the genome of Hepatitis B Virus regulate formation of nucleocapsid-like particles (NCPs) by core protein (Cp) in vitro, in an epsilon/polymerase-independent fashion. These multiple RNA Packaging Signals (PSs) can each form stem-loops encompassing a Cp-recognition motif, -RGAG-, in their loops. Drug-like molecules that bind the most important of these PS sites for NCP assembly regulation with nanomolar affinities, were identified by screening an immobilized ligand library with a fluorescently-labelled, RNA oligonucleotide encompassing this sequence. Sixty-six of these "hits", with affinities ranging from low nanomolar to high micromolar, were purchased as non-immobilized versions. Their affinities for PSs and effects on NCP assembly were determined in vitro by Surface Plasmon Resonance. High-affinity ligand binding is dependent on the presence of an -RGAG- motif within the loop of the PS, consistent with ligand cross-binding between PS sites. Simple structure-activity relationships show that it is also dependent on the presence of specific functional groups in these ligands. Some compounds are potent inhibitors of in vitro NCP assembly at nanomolar concentrations. Despite appropriate logP values, these ligands do not inhibit HBV replication in cell culture. However, modelling confirms the potential of using PS-binding ligands to target NCP assembly as a novel anti-viral strategy. This also allows for computational exploration of potential synergic effects between anti-viral ligands directed at distinct molecular targets in vivo. HBV PS-regulated assembly can be dysregulated by novel small molecule RNA-binding ligands opening a novel target for developing directly-acting anti-virals against this major pathogen.
Collapse
Affiliation(s)
- Nikesh Patel
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK. https://twitter.com/FBSResearch
| | - Fardokht Abulwerdi
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, United States
| | - Farzad Fatehi
- Department of Mathematics, University of York, York, YO10 5DD, UK; York Cross-disciplinary Centre for Systems Analysis, University of York, York, YO10 5GE, UK
| | - Iain W Manfield
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Stuart Le Grice
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, United States
| | - John S Schneekloth
- Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201, United States
| | - Reidun Twarock
- Department of Mathematics, University of York, York, YO10 5DD, UK; York Cross-disciplinary Centre for Systems Analysis, University of York, York, YO10 5GE, UK; Department of Biology, University of York, York, YO10 5DD, UK
| | - Peter G Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK. https://twitter.com/AstburyCentre
| |
Collapse
|