1
|
Constantinescu M, Bucura F, Roman A, Botoran OR, Ionete RE, Spiridon SI, Ionete EI, Zaharioiu AM, Marin F, Badea SL, Niculescu VC. A Study on the Ability of Nanomaterials to Adsorb NO and SO 2 from Combustion Gases and the Effectiveness of Their Separation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:816. [PMID: 38786773 PMCID: PMC11123805 DOI: 10.3390/nano14100816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Climate neutrality for the year 2050 is the goal assumed at the level of the EU27+UK. As Romania is no exception, it has assumed the gradual mitigation of pollution generated by the energy sector, and by 2030, according to 'Fit for 55', the share of energy from renewable sources must reach 42.5% from total energy consumption. For the rest of the energy produced from traditional sources, natural gas and/or coal, modern technologies will be used to retain the gaseous noxes. Even if they are not greenhouse gases, NO and SO2, generated from fossil fuel combustion, cause negative effects on the environment and biodiversity. The adsorption capacity of different materials, three nanomaterials developed in-house and three commercial adsorbents, both for NO and SO2, was tackled through gas chromatography, elemental analysis, and Fourier-transform infrared spectroscopy. Fe-BTC has proven to be an excellent material for separation efficiency and adsorption capacity under studied conditions, and is shown to be versatile both in the case of NO (80.00 cm3/g) and SO2 (63.07 cm3/g). All the developed nanomaterials generated superior results in comparison to the commercial adsorbents. The increase in pressure enhanced the performance of the absorption process, while temperature showed an opposite influence, by blocking the active centers on the surface.
Collapse
Affiliation(s)
- Marius Constantinescu
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania; (M.C.)
| | - Felicia Bucura
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania; (M.C.)
| | - Antoaneta Roman
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania; (M.C.)
| | - Oana Romina Botoran
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania; (M.C.)
| | - Roxana-Elena Ionete
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania; (M.C.)
| | - Stefan Ionut Spiridon
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania; (M.C.)
| | - Eusebiu Ilarian Ionete
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania; (M.C.)
| | - Anca Maria Zaharioiu
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania; (M.C.)
| | - Florian Marin
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania; (M.C.)
- Faculty of Agricultural Sciences, Food Industry and Environmental Protection, “Lucian Blaga” University of Sibiu, 7–9 I. Ratiu Str., 550012 Sibiu, Romania
| | - Silviu-Laurentiu Badea
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania; (M.C.)
| | - Violeta-Carolina Niculescu
- National Research and Development Institute for Cryogenic and Isotopic Technologies—ICSI Ramnicu Valcea, 4th Uzinei Street, 240050 Ramnicu Valcea, Romania; (M.C.)
| |
Collapse
|
2
|
Dudchenko N, Pawar S, Perelshtein I, Fixler D. Magnetite-Based Biosensors and Molecular Logic Gates: From Magnetite Synthesis to Application. BIOSENSORS 2023; 13:304. [PMID: 36979516 PMCID: PMC10046048 DOI: 10.3390/bios13030304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
In the last few decades, point-of-care (POC) sensors have become increasingly important in the detection of various targets for the early diagnostics and treatment of diseases. Diverse nanomaterials are used as building blocks for the development of smart biosensors and magnetite nanoparticles (MNPs) are among them. The intrinsic properties of MNPs, such as their large surface area, chemical stability, ease of functionalization, high saturation magnetization, and more, mean they have great potential for use in biosensors. Moreover, the unique characteristics of MNPs, such as their response to external magnetic fields, allow them to be easily manipulated (concentrated and redispersed) in fluidic media. As they are functionalized with biomolecules, MNPs bear high sensitivity and selectivity towards the detection of target biomolecules, which means they are advantageous in biosensor development and lead to a more sensitive, rapid, and accurate identification and quantification of target analytes. Due to the abovementioned properties of functionalized MNPs and their unique magnetic characteristics, they could be employed in the creation of new POC devices, molecular logic gates, and new biomolecular-based biocomputing interfaces, which would build on new ideas and principles. The current review outlines the synthesis, surface coverage, and functionalization of MNPs, as well as recent advancements in magnetite-based biosensors for POC diagnostics and some perspectives in molecular logic, and it also contains some of our own results regarding the topic, which include synthetic MNPs, their application for sample preparation, and the design of fluorescent-based molecular logic gates.
Collapse
Affiliation(s)
- Nataliia Dudchenko
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Shweta Pawar
- Faculty of Engineering and Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Ilana Perelshtein
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| | - Dror Fixler
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
3
|
Li Y, Zhou Y, Wang R, Chen Z, Luo X, Wang L, Zhao X, Zhang C, Yu P. Removal of aflatoxin B 1 from aqueous solution using amino-grafted magnetic mesoporous silica prepared from rice husk. Food Chem 2022; 389:132987. [PMID: 35489257 DOI: 10.1016/j.foodchem.2022.132987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
It is urgent to solve the contamination of aflatoxin B1 (AFB1) in food and water. In this study, the mesoporous silica was prepared from rice husk, which was then magnetized using the precipitation technique, followed by amino-modification with 3-aminopropyltriethoxysilane, forming amino-grafted magnetic mesoporous silica (NMMS). X-ray diffraction, Fourier transformed infrared spectra, and thermogravimetric analysis showed the successful grafting of amino groups on NMMS with a percentage of grafting up to 13.33%. The NMMS had an adsorption capacity of 169.88 μg/g and a removal rate of 93.43% for AFB1 in aqueous solutions at 20 °C, pH 7.0 for 2.0 h. The adsorption of AFB1 by NMMS followed a quasi-second-order kinetics and fitted well with the Langmuir model. Furthermore, the removal rate of AFB1 by NMMS remained 72.43% after repeating the adsorption-desorption process for five times. This study provided a facile approach to prepare NMMS for effective removal of AFB1.
Collapse
Affiliation(s)
- Ya'nan Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Yunyu Zhou
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Wuxi Zodolabs Biotech Co., Ltd, Yanxin Road 311, Wuxi 214174, China
| | - Ren Wang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China.
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xiaohu Luo
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Li Wang
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Xiuping Zhao
- School of Food Science and Technology, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| | - Chen Zhang
- Wuxi Xinwu Environmental Protection Technology Co., Ltd, Tianshan Road 8-2116, Wuxi 214028, China
| | - Peibin Yu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Lihu Road 1800, Wuxi 214122, China
| |
Collapse
|
4
|
Başkan G, Açıkel Ü, Levent M. Investigation of adsorption properties of oxytetracycline hydrochloride on magnetic zeolite/Fe3O4 particles. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Salami BA, Oyehan TA, Gambo Y, Badmus SO, Tanimu G, Adamu S, Lateef SA, Saleh TA. Technological trends in nanosilica synthesis and utilization in advanced treatment of water and wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42560-42600. [PMID: 35380322 DOI: 10.1007/s11356-022-19793-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Water and wastewater treatment applications stand to benefit immensely from the design and development of new materials based on silica nanoparticles and their derivatives. Nanosilica possesses unique properties, including low toxicity, chemical inertness, and excellent biocompatibility, and can be developed from a variety of sustainable precursor materials. Herein, we provide an account of the recent advances in the synthesis and utilization of nanosilica for wastewater treatment. This review covers key physicochemical aspects of several nanosilica materials and a variety of nanotechnology-enabled wastewater treatment techniques such as adsorption, separation membranes, and antimicrobial applications. It also discusses the prospective design and tuning options for nanosilica production, such as size control, morphological tuning, and surface functionalization. Informative discussions on nanosilica production from agricultural wastes have been offered, with a focus on the synthesis methodologies and pretreatment requirements for biomass precursors. The characterization of the different physicochemical features of nanosilica materials using critical surface analysis methods is discussed. Bio-hybrid nanosilica materials have also been highlighted to emphasize the critical relevance of environmental sustainability in wastewater treatment. To guarantee the thoroughness of the review, insights into nanosilica regeneration and reuse are provided. Overall, it is envisaged that this work's insights and views will inspire unique and efficient nanosilica material design and development with robust properties for water and wastewater treatment applications.
Collapse
Affiliation(s)
- Babatunde Abiodun Salami
- Interdisciplinary Research Center for Construction and Building Materials, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| | - Tajudeen Adeyinka Oyehan
- Geosciences Department, College of Petroleum Engineering and Geosciences, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Yahya Gambo
- Chemical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Suaibu O Badmus
- Center for Integrative Petroleum Research, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Gazali Tanimu
- Interdisciplinary Research Center for Refining and Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Sagir Adamu
- Chemical Engineering Department and Interdisciplinary Research Center for Refining & Advanced Chemicals, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Saheed A Lateef
- Department of Chemical Engineering, University of South Carolina, Columbia, SC, USA
| | - Tawfik A Saleh
- Chemistry Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia.
| |
Collapse
|
6
|
Dudchenko N, Pawar S, Perelshtein I, Fixler D. Magnetite Nanoparticles: Synthesis and Applications in Optics and Nanophotonics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2601. [PMID: 35407934 PMCID: PMC9000335 DOI: 10.3390/ma15072601] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023]
Abstract
Magnetite nanoparticles with different surface coverages are of great interest for many applications due to their intrinsic magnetic properties, nanometer size, and definite surface morphology. Magnetite nanoparticles are widely used for different medical-biological applications while their usage in optics is not as widespread. In recent years, nanomagnetite suspensions, so-called magnetic ferrofluids, are applied in optics due to their magneto-optical properties. This review gives an overview of nanomagnetite synthesis and its properties. In addition, the preparation and application of magnetic nanofluids in optics, nanophotonics, and magnetic imaging are described.
Collapse
Affiliation(s)
- Nataliia Dudchenko
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel; (N.D.); (I.P.)
| | - Shweta Pawar
- Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel;
| | - Ilana Perelshtein
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel; (N.D.); (I.P.)
| | - Dror Fixler
- Department of Chemistry, Bar-Ilan Institute of Nanotechnology & Advanced Materials (BINA), Bar Ilan University, Ramat Gan 5290002, Israel; (N.D.); (I.P.)
| |
Collapse
|
7
|
Han X, Zhang H, Zhang C, Zhao Y, Zhang N, Liang J. Preparation of Sepiolite Nanofibers Supported Zero Valent Iron Composite Material for Catalytic Removal of Tetracycline in Aqueous Solution. Front Chem 2021; 9:736285. [PMID: 34568284 PMCID: PMC8456004 DOI: 10.3389/fchem.2021.736285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/25/2021] [Indexed: 12/07/2022] Open
Abstract
The heavy use of antibiotics in medicine, stock farming and agriculture production has led to their gradual accumulation in environmental media, which poses a serious threat to ecological environment and human safety. As an efficient and promising catalyst for the degradation of antibiotics, nanoscale zero valent iron (nZVI) has attracted increasing attention in recent years. In this study, sepiolite nanofiber supported zero valent iron (nZVI/SEP) composite was prepared via a facile and environmentally friendly method. The nZVI particles (with size of 20–60 nm) were dispersed evenly on the surface of sepiolite nanofibers, and the catalytic performance for the removal of tetracycline hydrochloride (TC-HCl) in aqueous system was investigated. The effect of nZVI loading amount, catalyst dosage, H2O2 concentration and pH on the removal efficiency of TC-HCl were studied. It was revealed that the sepiolite supporter effectively inhibited the agglomeration of nZVI particles and increased the contact area between contaminant and the active sites, resulting in the higher catalytic performance than pure nZVI material. The TC-HCl removal efficiency of nZVI/SEP composite was up to 92.67% when TC-HCl concentration of 20 mg/L, catalyst dosage of 1.0 g/L, H2O2 concentration of 1.0 mM, pH value of 7. Therefore, the nZVI/SEP composites possess high catalytic activity for TC-HCl removal and have great application prospects in antibiotic wastewater treatment.
Collapse
Affiliation(s)
- Xiaoyu Han
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Hong Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Caihong Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Yan Zhao
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Na Zhang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| | - Jinsheng Liang
- Key Laboratory of Special Functional Materials for Ecological Environment and Information (Hebei University of Technology), Ministry of Education, Tianjin, China.,Institute of Power Source and Ecomaterials Science, Hebei University of Technology, Tianjin, China
| |
Collapse
|
8
|
Abstract
Rice is the second most extensively consumed food ingredient, and its by-products in the paddy field include rice husk and straw. Rice husk ash, resulting from rice husk burning, is considered an environment menace, inducing negative effects on the area in which it is disposed of. In this study, rice husk was applied as a silicate source to obtain mesoporous silica material. Characterization techniques confirmed the well-ordered mesophase and resemblance of mesoporous silica resulting from rice husk ash with one obtained from conventional silica sources. The mesoporous silica material was further used as catalyst support. The resulting catalysts were used for rhodamine 110 oxidation, proving high potential for oxidizing hazardous organic compounds, such as dyes from water, resulting in environmentally harmless products.
Collapse
|
9
|
Sulfamic acid pyromellitic diamide-functionalized MCM-41 as a multifunctional hybrid catalyst for melting-assisted solvent-free synthesis of bioactive 3,4-dihydropyrimidin-2-(1H)-ones. Sci Rep 2021; 11:11199. [PMID: 34045484 PMCID: PMC8159994 DOI: 10.1038/s41598-021-89572-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/28/2021] [Indexed: 01/17/2023] Open
Abstract
This study introduces a practical approach to fabricate a novel hybrid acidic catalyst, namely sulfamic acid pyromellitic diamide-functionalized MCM-41 (MCM-41-APS-PMDA-NHSO3H). Various techniques such as FTIR, TGA, XRD, BET, FESEM, and EDX were used to confirm its structural characteristics. The efficiency of the new MCM-41-APS-PMDA-NHSO3H organosilica nanomaterials, as a heterogenous nanocatalyst, was examined in the synthesis of biologically active 3,4-dihydropyrimidin-2-(1H)-one derivatives under solvent-free conditions. It was found that the nanoporous MCM-41-APS-PMDA-NHSO3H, demonstrating acidic nature and high surface area, can activate all the Biginelli reaction components to afford desired 3,4-dihydropyrimidin-2-(1H)-ones under solvent-free conditions in short reaction time. Furthermore, easy and quick isolation of the new introduced hybrid organosilica from the reaction mixture as well as its reusability with negligible loss of activity in at least five consecutive runs are another advantages of this green protocol.
Collapse
|