1
|
Xu C, Fang X, Xu X, Wei X. Genetic engineering drives the breakthrough of pig models in liver disease research. LIVER RESEARCH 2024; 8:131-140. [PMID: 39957748 PMCID: PMC11771255 DOI: 10.1016/j.livres.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/04/2024] [Accepted: 09/10/2024] [Indexed: 02/18/2025]
Abstract
Compared with the widely used rodents, pigs are anatomically, physiologically, and genetically more similar to humans, making them high-quality models for the study of liver diseases. Here, we review the latest research progress on pigs as a model of human liver disease, including methods for establishing them and their advantages in studying cystic fibrosis liver disease, acute liver failure, liver regeneration, non-alcoholic fatty liver disease, liver tumors, and xenotransplantation. We also emphasize the importance of genetic engineering techniques, mainly the CRISPR/Cas9 system, which has greatly enhanced the utility of porcine models as a tool for substantially advancing liver disease research. Genetic engineering is expected to propel the pig as one of the irreplaceable animal models for future biomedical research.
Collapse
Affiliation(s)
- Chenhao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xixi Fang
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People’s Hospital, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
2
|
Chu NHS, Chow E, Chan JCN. The Therapeutic Potential of the Specific Intestinal Microbiome (SIM) Diet on Metabolic Diseases. BIOLOGY 2024; 13:498. [PMID: 39056692 PMCID: PMC11273990 DOI: 10.3390/biology13070498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Exploring the intricate crosstalk between dietary prebiotics and the specific intestinal microbiome (SIM) is intriguing in explaining the mechanisms of current successful dietary interventions, including the Mediterranean diet and high-fiber diet. This knowledge forms a robust basis for developing a new natural food therapy. The SIM diet can be measured and evaluated to establish a reliable basis for the management of metabolic diseases, such as diabetes, metabolic (dysfunction)-associated fatty liver disease (MAFLD), obesity, and metabolic cardiovascular disease. This review aims to delve into the existing body of research to shed light on the promising developments of possible dietary prebiotics in this field and explore the implications for clinical practice. The exciting part is the crosstalk of diet, microbiota, and gut-organ interactions facilitated by producing short-chain fatty acids, bile acids, and subsequent metabolite production. These metabolic-related microorganisms include Butyricicoccus, Akkermansia, and Phascolarctobacterium. The SIM diet, rather than supplementation, holds the promise of significant health consequences via the prolonged reaction with the gut microbiome. Most importantly, the literature consistently reports no adverse effects, providing a strong foundation for the safety of this dietary therapy.
Collapse
Affiliation(s)
- Natural H. S. Chu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
| | - Juliana C. N. Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China; (E.C.); (J.C.N.C.)
- Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
- Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong SAR, China
| |
Collapse
|
3
|
Ma X, Liu Y, Han F, Cheng T, Wang K, Xu Y. Effect of short-term moderate intake of ice wine on hepatic glycolipid metabolism in C57BL/6J mice. Food Funct 2024; 15:5063-5072. [PMID: 38656306 DOI: 10.1039/d3fo05665a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
As the correlation between high fructose intake and metabolism-related diseases (e.g., obesity, fatty liver, and type 2 diabetes) has been increasingly reported, the health benefits of consuming ice wine high in fructose have been called into question. In this study, 6-week-old male C57BL/6J mice were divided into control (pure water), fructose (130 g L-1 fructose solution), alcohol (11% alcohol solution), low-dose (50% diluted ice wine) and high-dose ice wine (100% ice wine) groups to investigate the effects and mechanisms of short-term (4 weeks) ice wine intake on hepatic glycolipid metabolism in mice. The results showed that short-term consumption of ice wine suppressed the elevation of low-density lipoprotein cholesterol content and did not cause hepatic lipid accumulation compared with those of the fructose group. Meanwhile, ice wine had no significant effect on lipogenesis although it inhibited fatty acid oxidation via the PPARα/CPT-1α pathway. Compared with the control group, ice wine interfered with the elevation of fasting glucose and the insulin resistance index in a dose-dependent manner, and led to an increase in plasma uric acid levels, which may further contribute to the disruption of glucolipid metabolism. Overall, short-term moderate intake of ice wine over a 4-week period may not significantly affect hepatic glycolipid metabolism in C57BL/6J mice for the time being.
Collapse
Affiliation(s)
- Xinyuan Ma
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Yang Liu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Fuliang Han
- College of Enology, Northwest A&F University, Yangling 712100, China.
- Shaanxi Engineering Research Center for Viti-Viniculture, Northwest A&F University, Yangling 712100, China
- Heyang Experimental Demonstration Station, Northwest A&F University, Weinan 715300, China
- Ningxia Helan Mountain's East Foothill Wine Experiment and Demonstration Station, Northwest A&F University, Yongning 750104, China
| | - Tiantian Cheng
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Kaixian Wang
- College of Enology, Northwest A&F University, Yangling 712100, China.
| | - Yiwen Xu
- College of Enology, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
4
|
Chetehouna S, Derouiche S, Reggami Y, Boulaares I. Sonchus maritimus Extract-Loaded Niosomes Bioconjugated by Linoleic Acid in Hepatic Encephalopathy Induced by High-Fructose Diet in Albino Wistar Rats. ARCHIVES OF RAZI INSTITUTE 2024; 79:189-200. [PMID: 39192951 PMCID: PMC11345485 DOI: 10.32592/ari.2024.79.1.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/30/2023] [Indexed: 08/29/2024]
Abstract
One of the major roles of nanotechnology in the pharmaceutical field is to provide a facility to improve drug delivery systems and design smart nanocarriers with the potential to deliver specific biomolecules to the target site for treatment. This study evaluated Sonchus maritimus-loaded niosomes (SmE-N) in hepatic encephalopathy induced by a high-fructose diet (HFD) in rats. High-performance liquid chromatography (HPLC) analysis of Sonchus maritimus extracts (SmE), the synthesis of niosomes, and their characterization were performed. For the in vivo study, 24 male rats were haphazardly divided into 4 groups (n=6) control, HFD (35%), HFD+SmE-N (50 mg/kg/day), and HFD+metformin (50 mg/kg/day). Clinical behaviors and biological markers were assessed for all groups. The in vitro results of the chromatographic analysis revealed that Sonchus maritimus contains important phenolic acids, including gallic acid, vanillic acid, chlorogenic acid, and caffeic acid, as well as diverse flavonoids, including quercetin, rutin, and naringin bioactive compounds. The niosome formulation, characterized by the encapsulation efficiency of SmE, reached up to 61.40%. The in vivo results of the HFD showed a significant change in behavior parameters, liver glycogen, transaminase enzymes, brain protein, and acetylcholine esterase levels. In addition, there was a significant increase in malondialdehyde levels and a decrease in glutathione, superoxide dismutase, and glutathione peroxidase activities in the HFD group compared to the control group. Furthermore, the histopathological observation recorded a profound modification in the liver and brain tissues of the HFD group. In contrast, the treatment with SmE-N and metformin assured a partial amelioration in the noticed parameters compared to the HFD group, but SmE-N led to a better improvement than metformin compared to the control group. In conclusion, the use of SmE-N bioconjugated by linoleic acid seems powerful in treating the complications of fructose-induced metabolic disorders due to its hepato-neuroprotective abilities.
Collapse
Affiliation(s)
- S Chetehouna
- Department of Microbiology and Biochemistry, Faculty of Sciences, Mohamed Boudiaf-M'sila University, M'sila 28000, Algeria
- Laboratory of Biology: Applications in Health and Environment, Department of Microbiology and Biochemistry, Faculty of Sciences, Mohamed Boudiaf-M'sila University, M'sila 28000, Algeria
| | - S Derouiche
- Njuki Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, El Oued University, El Oued 39000, Algeria
- Laboratory of Biodiversity and application of biotechnology in the agricultural field, Faculty of natural and life sciences, El Oued University, El-Oued 39000, Algeria
| | - Y Reggami
- Laboratory of Biology: Applications in Health and Environment, Department of Microbiology and Biochemistry, Faculty of Sciences, Mohamed Boudiaf-M'sila University, M'sila 28000, Algeria
- Department of Natural and Life Sciences, Faculty of Sciences, University 20 August 1955 - Skikda, SKIKDA 21000, Algeria
| | - I Boulaares
- Njuki Department of Cellular and Molecular Biology, Faculty of Natural and Life Sciences, El Oued University, El Oued 39000, Algeria
- Laboratory of Biodiversity and application of biotechnology in the agricultural field, Faculty of natural and life sciences, El Oued University, El-Oued 39000, Algeria
| |
Collapse
|
5
|
Wei R, Teng Y, Han C, Wei S, Li L, Liu H, Hu S, Kang B, Xu H. Multi-omics reveals goose fatty liver formation from metabolic reprogramming. Front Vet Sci 2024; 11:1122904. [PMID: 38348107 PMCID: PMC10859500 DOI: 10.3389/fvets.2024.1122904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
To comprehensively provide insight into goose fatty liver formation, we performed an integrative analysis of the liver transcriptome, lipidome, and amino acid metabolome, as well as peripheral adipose tissue transcriptome analysis using samples collected from the overfed geese and normally fed geese. Transcriptome analysis showed that liver metabolism pathways were mainly enriched in glucolipid metabolism, amino acid metabolism, inflammation response, and cell cycle; peripheral adipose tissue and the liver cooperatively regulated liver lipid accumulation during overfeeding. Liver lipidome patterns obviously changed after overfeeding, and 157 different lipids were yielded. In the liver amino acid metabolome, the level of Lys increased after overfeeding. In summary, this is the first study describing goose fatty liver formation from an integrative analysis of transcriptome, lipidome, and amino acid metabolome, which will provide a whole new dimension to understanding the mechanism of goose fatty liver formation.
Collapse
Affiliation(s)
- Rongxue Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yongqiang Teng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shouhai Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bo Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-Omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Wei R, Han C, Wei S, Teng Y, Li L, Liu H, Hu S, Kang B, Xu H. Integrative analysis of transcriptome and lipidome reveals fructose pro-steatosis mechanism in goose fatty liver. Front Nutr 2023; 9:1052600. [PMID: 36704791 PMCID: PMC9871465 DOI: 10.3389/fnut.2022.1052600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/06/2022] [Indexed: 01/12/2023] Open
Abstract
To further explore the fructose pro-steatosis mechanism, we performed an integrative analysis of liver transcriptome and lipidome as well as peripheral adipose tissues transcriptome analysis using samples collected from geese overfed with maize flour (control group) and geese overfed with maize flour supplemented with 10% fructose (treatment group). Overfeeding period of the treatment group was significantly shorter than that of the control group (p < 0.05). Dietary supplementation with 10% fructose induced more severe steatosis in goose liver. Compared with the control group, the treatment group had lower in ceramide levels (p < 0.05). The key differentially expressed genes (DEGs) (control group vs. treatment group) involved in liver fatty acid biosynthesis and steroid biosynthesis were downregulated. The conjoint analysis between DEGs and different lipids showed that fatty acid biosynthesis and steroid biosynthesis were the highest impact score pathways. In conclusion, fructose expedites goose liver lipid accumulation maximization during overfeeding.
Collapse
Affiliation(s)
- Rongxue Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chunchun Han
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shouhai Wei
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yongqiang Teng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Shengqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bo Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Hengyong Xu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
7
|
Chua D, Low ZS, Cheam GX, Ng AS, Tan NS. Utility of Human Relevant Preclinical Animal Models in Navigating NAFLD to MAFLD Paradigm. Int J Mol Sci 2022; 23:14762. [PMID: 36499091 PMCID: PMC9737809 DOI: 10.3390/ijms232314762] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Fatty liver disease is an emerging contributor to disease burden worldwide. The past decades of work established the heterogeneous nature of non-alcoholic fatty liver disease (NAFLD) etiology and systemic contributions to the pathogenesis of the disease. This called for the proposal of a redefinition in 2020 to that of metabolic dysfunction-associated fatty liver disease (MAFLD) to better reflect the current understanding of the disease. To date, several clinical cohort studies comparing NAFLD and MAFLD hint at the relevancy of the new nomenclature in enriching for patients with more severe hepatic injury and extrahepatic comorbidities. However, the underlying systemic pathogenesis is still not fully understood. Preclinical animal models have been imperative in elucidating key biological mechanisms in various contexts, including intrahepatic disease progression, interorgan crosstalk and systemic dysregulation. Furthermore, they are integral in developing novel therapeutics against MAFLD. However, substantial contextual variabilities exist across different models due to the lack of standardization in several aspects. As such, it is crucial to understand the strengths and weaknesses of existing models to better align them to the human condition. In this review, we consolidate the implications arising from the change in nomenclature and summarize MAFLD pathogenesis. Subsequently, we provide an updated evaluation of existing MAFLD preclinical models in alignment with the new definitions and perspectives to improve their translational relevance.
Collapse
Affiliation(s)
- Damien Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Zun Siong Low
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
| | - Guo Xiang Cheam
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Aik Seng Ng
- Radcliffe Department of Medicine, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Nguan Soon Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
8
|
Xie J, Shi S, Liu Y, Wang S, Rajput SA, Song T. Fructose metabolism and its role in pig production: A mini-review. Front Nutr 2022; 9:922051. [PMID: 35967778 PMCID: PMC9373593 DOI: 10.3389/fnut.2022.922051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/06/2022] [Indexed: 11/29/2022] Open
Abstract
Epidemiological studies have shown that excessive intake of fructose is largely responsible for the increasing incidence of non-alcoholic fatty liver, obesity, and diabetes. However, depending on the amount of fructose consumption from diet, the metabolic role of fructose is controversial. Recently, there have been increasing studies reporting that diets low in fructose expand the surface area of the gut and increase nutrient absorption in mouse model, which is widely used in fructose-related studies. However, excessive fructose consumption spills over from the small intestine into the liver for steatosis and increases the risk of colon cancer. Therefore, suitable animal models may be needed to study fructose-induced metabolic changes. Along with its use in global meat production, pig is well-known as a biomedical model with an advantage over murine and other animal models as it has similar nutrition and metabolism to human in anatomical and physiological aspects. Here, we review the characteristics and metabolism of fructose and summarize observations of fructose in pig reproduction, growth, and development as well as acting as a human biomedical model. This review highlights fructose metabolism from the intestine to the blood cycle and presents the critical role of fructose in pig, which could provide new strategies for curbing human metabolic diseases and promoting pig production.
Collapse
Affiliation(s)
- Jiahao Xie
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiyi Shi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yucheng Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shaoshuai Wang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shahid Ali Rajput
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture Multan, Multan, Pakistan
| | - Tongxing Song
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Chen L, Li J, Yuan R, Wang Y, Zhang J, Lin Y, Wang L, Zhu X, Zhu W, Bai J, Kong F, Zeng B, Lu L, Ma J, Long K, Jin L, Huang Z, Huo J, Gu Y, Wang D, Mo D, Li D, Tang Q, Li X, Wu J, Chen Y, Li M. Dynamic 3D genome reorganization during development and metabolic stress of the porcine liver. Cell Discov 2022; 8:56. [PMID: 35701393 PMCID: PMC9197842 DOI: 10.1038/s41421-022-00416-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/28/2022] [Indexed: 11/28/2022] Open
Abstract
Liver development is a complex process that is regulated by a series of signaling pathways. Three-dimensional (3D) chromatin architecture plays an important role in transcriptional regulation; nonetheless, its dynamics and role in the rapid transition of core liver functions during development and obesity-induced metabolic stress remain largely unexplored. To investigate the dynamic chromatin architecture during liver development and under metabolic stress, we generated high-resolution maps of chromatin architecture for porcine livers across six major developmental stages (from embryonic day 38 to the adult stage) and under a high-fat diet-induced obesity. The characteristically loose chromatin architecture supports a highly plastic genome organization during early liver development, which fundamentally contributes to the rapid functional transitions in the liver after birth. We reveal the multi-scale reorganization of chromatin architecture and its influence on transcriptional regulation of critical signaling processes during liver development, and show its close association with transition in hepatic functions (i.e., from hematopoiesis in the fetus to metabolism and immunity after birth). The limited changes in chromatin structure help explain the observed metabolic adaptation to excessive energy intake in pigs. These results provide a global overview of chromatin architecture dynamics associated with the transition of physiological liver functions between prenatal development and postnatal maturation, and a foundational resource that allows for future in-depth functional characterization.
Collapse
Affiliation(s)
- Luxi Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jing Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renqiang Yuan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yujie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiaman Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yu Lin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lina Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.,Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Xingxing Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wei Zhu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jingyi Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fanli Kong
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bo Zeng
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lu Lu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jideng Ma
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Keren Long
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Long Jin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jinlong Huo
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Yiren Gu
- Animal Breeding and Genetics Key Laboratory of Sichuan Province, Sichuan Animal Science Academy, Chengdu, Sichuan, China
| | - Danyang Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
| | - Delin Mo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Diyan Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qianzi Tang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xuewei Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Jiangwei Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yaosheng Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
10
|
Ajah AA, Lembede BW, Nkomozepi P, Erlwanger KH, Nyakudya TT. Neonatal Oral Administration of Chrysin Prevents Long-Term Development of Non-Alcoholic Fatty Liver Disease in a Sexually Dimorphic Manner in Fructose Nurtured Sprague Dawley Rats. Life (Basel) 2022; 12:life12060790. [PMID: 35743821 PMCID: PMC9225280 DOI: 10.3390/life12060790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/30/2022] [Accepted: 05/23/2022] [Indexed: 12/03/2022] Open
Abstract
High-fructose diets are linked with the development of non-alcoholic fatty liver disease (NAFLD), the management of which is a burden to society. Interventions with phytochemicals in the early postnatal period may prevent fructose-induced NAFLD later in adulthood. We investigated the protective potential of chrysin against fructose-induced NAFLD. Four-day-old male and female suckling Sprague Dawley rats (N = 112) were randomly grouped and orally gavaged daily with distilled water (negative Control-Cn + W), chrysin(Chr-100 mg/kg), fructose-solution (Fr-20% w/v), and Chr + Fr between postnatal day (PND) 4 and 21 and then weaned onto normal rat chow and plain drinking water to PND 55. From PND 56 to 130, half of the rats continued on plain water, and the rest had Fr as drinking fluid. Terminally, the liver tissue was collected, and the lipid content was determined and histologically assessed for NAFLD. Dietary Fr induced an increased hepatic lipid content (p = 0.0001 vs. Cn + W) both sexes, and it was only attenuated by neonatal Chr in female rats (p < 0.05). Histologically, there was increased microvesicular steatosis (p = 0.0001 vs. Cn + W) in both sexes, and it was prevented by neonatal Chr (p > 0.05). Fr caused macrovesicular steatosis (p = 0.01 vs. Cn + W) in females only, and chrysin did not prevent it (p > 0.05). Fr induced hepatocellular hypertrophy, and inflammation was observed in females only (p = 0.01 vs. Cn + W), and this was prevented by Chr (p > 0.05). The collagen area fraction was increased by Fr (p = 0.02 (males) and p = 0.04 (females) vs. Cn + W, respectively; however, chrysin did not prevent this (p > 0.05). Neonatal chrysin prevented some of the deleterious effects of the high-fructose diet on the liver, suggesting that chrysin should be further explored as a strategic prophylactic neonatal intervention against high-fructose-diet-induced NAFLD.
Collapse
Affiliation(s)
- Austin A. Ajah
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (B.W.L.); (K.H.E.)
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, University of Port Harcourt, P.M.B. 5323, Choba, Port Harcourt 500102, Nigeria
- Correspondence:
| | - Busisani W. Lembede
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (B.W.L.); (K.H.E.)
| | - Pilani Nkomozepi
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Corner Beit and Siemert Street, Doornfontein, Johannesburg 2094, South Africa; (P.N.); (T.T.N.)
| | - Kennedy H. Erlwanger
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa; (B.W.L.); (K.H.E.)
| | - Trevor T. Nyakudya
- Department of Human Anatomy and Physiology, Faculty of Health Sciences, University of Johannesburg, Corner Beit and Siemert Street, Doornfontein, Johannesburg 2094, South Africa; (P.N.); (T.T.N.)
- Department of Physiology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Private Bag X323, Gezina, Pretoria 0031, South Africa
| |
Collapse
|
11
|
Sousa-Lima I, Kim HJ, Jones J, Kim YB. Rho-Kinase as a Therapeutic Target for Nonalcoholic Fatty Liver Diseases. Diabetes Metab J 2021; 45:655-674. [PMID: 34610720 PMCID: PMC8497927 DOI: 10.4093/dmj.2021.0197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a major public health problem and the most common form of chronic liver disease, affecting 25% of the global population. Although NAFLD is closely linked with obesity, insulin resistance, and type 2 diabetes mellitus, knowledge on its pathogenesis remains incomplete. Emerging data have underscored the importance of Rho-kinase (Rho-associated coiled-coil-containing kinase [ROCK]) action in the maintenance of normal hepatic lipid homeostasis. In particular, pharmacological blockade of ROCK in hepatocytes or hepatic stellate cells prevents the progression of liver diseases such as NAFLD and fibrosis. Moreover, mice lacking hepatic ROCK1 are protected against obesity-induced fatty liver diseases by suppressing hepatic de novo lipogenesis. Here we review the roles of ROCK as an indispensable regulator of obesity-induced fatty liver disease and highlight the key cellular pathway governing hepatic lipid accumulation, with focus on de novo lipogenesis and its impact on therapeutic potential. Consequently, a comprehensive understanding of the metabolic milieu linking to liver dysfunction triggered by ROCK activation may help identify new targets for treating fatty liver diseases such as NAFLD.
Collapse
Affiliation(s)
- Inês Sousa-Lima
- CEDOC-Chronic Disease Research Center, NOVA Medical School/ Faculty of Medical Sciences, New University of Lisbon, Lisbon, Portugal
| | - Hyun Jeong Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - John Jones
- Center for Neuroscience and Cell Biology, University of Coimbra, Marquis of Pombal Square, Coimbra, Portugal
| | - Young-Bum Kim
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
- Corresponding author: Young-Bum Kim https://orcid.org/0000-0001-9471-6330 Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02215, USA E-mail:
| |
Collapse
|