Isali I, McClellan P, Calaway A, Prunty M, Abbosh P, Mishra K, Ponsky L, Markt S, Psutka SP, Bukavina L. Gene network profiling in muscle-invasive bladder cancer: A systematic review and meta-analysis.
Urol Oncol 2022;
40:197.e11-197.e23. [PMID:
35039218 PMCID:
PMC10123538 DOI:
10.1016/j.urolonc.2021.11.003]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/17/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND
Determining meta-analysis of transcriptional profiling of muscle-invasive bladder cancer (MIBC) through Gene Expression Omnibus (GEO) datasets has not been investigated. This study aims to define gene expression profiles in MIBC and to identify potential candidate genes and pathways.
OBJECTIVES
To review and evaluate gene expression studies in MIBC through publicly available RNA sequencing (RNA-Seq) and microarray data in order to identify potential prognostic and therapeutic targets for MIBC.
METHODS
A systematic literature search of the Ovid MEDLINE, PubMed, and Wiley Cochrane Central Register of Controlled Trials databases was performed using the terms "gene," "gene expression," and "bladder cancer" January 1, 1990 through March 2021 focused on populations with MIBC.
RESULTS
In the final analysis, GEO datasets were included. Fixed effect model was employed in the meta-analysis. Gene networking connections and gene-set functional analyses of the identified genes as differentially expressed in MIBC were performed using ImaGEO and GeneMANIA software. A heatmap for the upregulated and downregulated genes was generated along with the correlated pathways.
CONCLUSION
A total of 9 genes were reported in this analysis. Six genes were reported as upregulated (ProTα, SPINT1, UBE2E1, RAB25, KPNB1, HDAC1) and 3 genes as downregulated (NUP188, IPO13, NUP124). Genes were found to be involved in "ubiquitin mediated proteolysis," "protein processing in endoplasmic reticulum," "transcriptional misregulation in cancer," and "RNA transport" pathways.
Collapse