1
|
Klirs Y, Novosolov M, Gissi C, Garić R, Pupko T, Stach T, Huchon D. Evolutionary Insights from the Mitochondrial Genome of Oikopleura dioica: Sequencing Challenges, RNA Editing, Gene Transfers to the Nucleus, and tRNA Loss. Genome Biol Evol 2024; 16:evae181. [PMID: 39162337 PMCID: PMC11384887 DOI: 10.1093/gbe/evae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/19/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Sequencing the mitochondrial genome of the tunicate Oikopleura dioica is a challenging task due to the presence of long poly-A/T homopolymer stretches, which impair sequencing and assembly. Here, we report on the sequencing and annotation of the majority of the mitochondrial genome of O. dioica by means of combining several DNA and amplicon reads obtained by Illumina and MinIon Oxford Nanopore Technologies with public RNA sequences. We document extensive RNA editing, since all homopolymer stretches present in the mitochondrial DNA correspond to 6U-regions in the mitochondrial RNA. Out of the 13 canonical protein-coding genes, we were able to detect eight, plus an unassigned open reading frame that lacked sequence similarity to canonical mitochondrial protein-coding genes. We show that the nad3 gene has been transferred to the nucleus and acquired a mitochondria-targeting signal. In addition to two very short rRNAs, we could only identify a single tRNA (tRNA-Met), suggesting multiple losses of tRNA genes, supported by a corresponding loss of mitochondrial aminoacyl-tRNA synthetases in the nuclear genome. Based on the eight canonical protein-coding genes identified, we reconstructed maximum likelihood and Bayesian phylogenetic trees and inferred an extreme evolutionary rate of this mitochondrial genome. The phylogenetic position of appendicularians among tunicates, however, could not be accurately determined.
Collapse
Affiliation(s)
- Yael Klirs
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Maria Novosolov
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
- Faculty of Health and Medical Sciences, GeoGenetics Centre, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Carmela Gissi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari 70126, Italy
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Consiglio Nazionale delle Ricerche, Bari 70126, Italy
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Roma 00196, Italy
| | - Rade Garić
- Institute for Marine and Coastal Research, University of Dubrovnik, Dubrovnik 20000, Croatia
| | - Tal Pupko
- George S. Wise Faculty of Life Sciences, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Thomas Stach
- Department of Molecular Parasitology, Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dorothée Huchon
- George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv 6997801, Israel
- The Steinhardt Museum of Natural History and National Research Center, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
2
|
Moreno-Dávila B, Huato-Soberanis L, Gómez-Gutiérrez J, Galván-Tirado C, Sánchez C, Alcoverro T, Balart EF, Turon X. Taxonomic identity of Distapliastylifera (Tunicata, Ascidiacea), a new arrival to the eastern Pacific displaying invasive behavior in the Gulf of California, Mexico. Zookeys 2023; 1157:109-125. [PMID: 37234953 PMCID: PMC10208407 DOI: 10.3897/zookeys.1157.95986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/06/2023] [Indexed: 05/28/2023] Open
Abstract
A colonial ascidian of the genus Distaplia caused a mass mortality of the pen shell Atrinamaura (Sowerby, 1835) during June 2016 in the southwest of the Gulf of California (Mexico), with a significant socio-economic cost. Tentatively identified in previous works as Distapliacf.stylifera, a precise taxonomic determination was still lacking. In the present work, based on a detailed morphological study, it is confirmed that this aggressive species is Distapliastylifera (Kowalevsky, 1874). Originally described from the Red Sea, the species currently has a wide circumtropical distribution (with the exception of the Eastern Pacific to date) and is reported as introduced in parts of its range. The present account thus represents an important range extension of this species. However, when revising the original description and later observations, the reported variability of several characters makes it likely that the binomen is in fact a complex of species, as is common in other ascidians with wide distributions. A complete morphological and genetic study including populations from the entire range of distribution would be necessary to settle the status of D.stylifera. Taxonomic uncertainties hinder a correct interpretation of biogeographical patterns and inference on the origin of the studied population. Nevertheless, the known introduction potential of the species, coupled with an explosive growth in an anthropized environment, and the lack of any previous reports in the Eastern Pacific, strongly suggest that the investigated population represents yet another instance of ascidian introduction. From the point of view of management, its invasive behavior is cause for great concern and warrants mitigation measures.
Collapse
Affiliation(s)
- Betzabé Moreno-Dávila
- Programa de Ecología Pesquera, Centro de Investigaciones Biológicas del Noroeste, C.P. 23096, La Paz, BCS, Mexico
| | - Leonardo Huato-Soberanis
- Programa de Ecología Pesquera, Centro de Investigaciones Biológicas del Noroeste, C.P. 23096, La Paz, BCS, Mexico
| | - Jaime Gómez-Gutiérrez
- Departamento de Plancton y Ecología Marina, Centro Interdisciplinario de Ciencias Marinas, Instituto Politécnico Nacional, C.P. 23096, La Paz, BCS, Mexico
| | | | - Carlos Sánchez
- CONACYT, Universidad Autónoma de Baja California Sur, La Paz, BCS, Mexico
| | - Teresa Alcoverro
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, La Paz, BCS, Mexico
| | - Eduardo F. Balart
- Programa de Ecología Pesquera, Centro de Investigaciones Biológicas del Noroeste, C.P. 23096, La Paz, BCS, Mexico
| | - Xavier Turon
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, La Paz, BCS, Mexico
| |
Collapse
|
3
|
Phylogeographic and Morphological Analysis of Botrylloides niger Herdman, 1886 from the Northeastern Mediterranean Sea. DIVERSITY 2023. [DOI: 10.3390/d15030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Botrylloides niger (class Ascidiacea) is an invasive marine filter-feeding invertebrate that is believed to originate from the West Atlantic region. This species of colonial tunicate has been observed in several locations along the coasts of Israel and around the Suez Canal, but it has not yet been reported on the coasts of the Northeastern Mediterranean Sea (NEMS), suggesting an ongoing Lessepsian migration. However, the extent of this invasion might be concealed by reports of other potentially misidentified species of Botrylloides, given that the strong morphological similarities within this genus renders taxonomical identification particularly challenging. In this study, we performed a phylogeographic and morphological analysis of B. niger in the NEMS. We collected 238 samples from 8 sampling stations covering 824 km of the coastlines of NEMS. We reported 14 different morphotypes, of which the orange-brown, orange, and brown-striped morphs were the most abundant. Using the mitochondrial cytochrome C oxidase I (COI) as a DNA barcode marker, we identified 4 haplotypes. The COI haplotypes clustered with the reference B. niger sequences from GenBank and differed significantly from the sister Botrylloides species. We confirmed our identification using three additional barcoding markers (Histone 3, 18S rRNA, and 28S rRNA), which all matched with over 99% similarity to reference sequences. In addition, we monitored a station for a year and conducted a temporal analysis of the collected colonies. The colonies were absent during the winter and spring, while new colonies were established in the summer and expanded during autumn. We performed demographic population analysis on our spatial data that identified a possible population subdivision at a sampling site, which might have been caused by local freshwater input. Herein, we present the first report on the presence of Botrylloides niger in the NEMS. This study represents a key step toward understanding the diversity and the propagation of this highly invasive species of colonial ascidians, both within the Mediterranean basin as well as globally.
Collapse
|
4
|
New Botrylloides, Botryllus, and Symplegma (Ascidiacea: Styelidae) in Coral Reefs of the Southern Gulf of Mexico and Mexican Caribbean Sea. DIVERSITY 2022. [DOI: 10.3390/d14110977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Compound styelid ascidians are distributed in all marine environments and usually exhibit high morphological plasticity and complexity. In particular, Botrylloides, Botryllus, and Symplegma species show high morphological variations leading to confusion in traditional taxonomy assignments and to ambiguity in species delineation. Fewer than 20 species in these genera are registered in the Atlantic region. Here we surveyed the coral reefs of the southern Gulf of Mexico and Mexican Caribbean Sea, barcoded a total of 110 samples collected in seven reefs in 24 sites using mitochondrial cytochrome c oxidase subunit I (or 1), as well as performed a detailed morphological study. Species delimitation analyses of barcoding sequencing revealed twelve botryllid species and three Symplegma species. Two of the botryllid species were identified as Botrylloides niger and Botryllus humilis; the latter is the first record for the Gulf of México. The remaining 10 botryllid species and the two Symplegma species are not currently described in the literature and have no close matches in GenBank. One of the Symplegma samples could not be identified as an existing species and current characters do not support the description of a new species. Here we describe twelve new species, seven in Botryllus: B. bonanzus sp. nov, B. camur sp. nov., B. hartensis sp. nov., B. lambertorum sp. nov., B. nortensis sp. nov., B. tunnelli sp. nov., and B. unamensis sp. nov., three in Botrylloides: B. alacranensis sp. nov., B. ampullarius sp. nov., B. catalitinae sp. nov., and two in Symplegma: S. papillata sp. nov., and S. sisalensis sp. nov. We also present a tabular identification key of Botryllus, Botrylloides and Symplegma Atlantic species.
Collapse
|
5
|
Nourizadeh S, Kassmer S, Rodriguez D, Hiebert LS, De Tomaso AW. Whole body regeneration and developmental competition in two botryllid ascidians. EvoDevo 2021; 12:15. [PMID: 34911568 PMCID: PMC8675491 DOI: 10.1186/s13227-021-00185-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Botryllid ascidians are a group of marine invertebrate chordates that are colonial and grow by repeated rounds of asexual reproduction to form a colony of individual bodies, called zooids, linked by a common vascular network. Two distinct processes are responsible for zooid regeneration. In the first, called blastogenesis, new zooids arise from a region of multipotent epithelium from a pre-existing zooid. In the second, called whole body regeneration (WBR), mobile cells in the vasculature coalesce and are the source of the new zooid. In some botryllid species, blastogenesis and WBR occur concurrently, while in others, blastogenesis is used exclusively for growth, while WBR only occurs following injury or exiting periods of dormancy. In species such as Botrylloides diegensis, injury induced WBR is triggered by the surgical isolation of a small piece of vasculature. However, Botryllus schlosseri has unique requirements that must be met for successful injury induced WBR. Our goal was to understand why there would be different requirements between these two species. RESULTS While WBR in B. diegensis was robust, we found that in B. schlosseri, new zooid growth following injury is unlikely due to circulatory cells, but instead a result of ectopic development of tissues leftover from the blastogenic process. These tissues could be whole, damaged, or partially resorbed developing zooids, and we defined the minimal amount of vascular biomass to support ectopic regeneration. We did find a common theme between the two species: a competitive process exists which results in only a single zooid reaching maturity following injury. We utilized this phenomenon and found that competition is reversible and mediated by circulating factors and/or cells. CONCLUSIONS We propose that WBR does not occur in B. schlosseri and that the unique requirements defined in other studies only serve to increase the chances of ectopic development. This is likely a response to injury as we have discovered a vascular-based reversible competitive mechanism which ensures that only a single zooid completes development. This competition has been described in other species, but the unique response of B. schlosseri to injury provides a new model to study resource allocation and competition within an individual.
Collapse
Affiliation(s)
- Shane Nourizadeh
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA.
| | - Susannah Kassmer
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| | - Delany Rodriguez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| | - Laurel S Hiebert
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| | - Anthony W De Tomaso
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, 93106, USA
| |
Collapse
|
6
|
First Record of Colonial Ascidian, Botrylloides diegensis Ritter and Forsyth, 1917 (Ascidiacea, Stolidobranchia, Styelidae), in South Korea. WATER 2021. [DOI: 10.3390/w13162164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Botrylloides species are important members of the fouling community colonizing artificial substrates in harbors and marinas. During monitoring in 2017–2020 of non-indigenous species in Korea, one colonial ascidian species was distinctly different from other native colonial ascidians, such as B. violaceus and Botryllus schlosseri, in South Korea. This species was identified as B. diegensis. DNA barcodes with mitochondrial COI were used to identify one-toned and two-toned colonies of B. diegensis. Intraspecific variations between Korean and other regions of B. diegensis from the NCBI ranged from 0.0% to 1.3%. The Korean B. diegensis was clearly distinct from other species of Botrylloides at 15.8–24.2%. In phylogenetic analysis results, Korean B. diegensis was established as a single clade with other regions of B. diegensis and was clearly distinct from Korean B. violaceus. After reviewing previous monitoring data, it was found that two-toned B. diegensis was already found in six harbors by July 2017. It has now spread into 14 harbors along the coastal line of South Korea. This means that B. diegensis might have been introduced to South Korea between 1999 and 2016.
Collapse
|