1
|
Celis-Giraldo C, Suárez CF, Agudelo W, Ibarrola N, Degano R, Díaz J, Manzano-Román R, Patarroyo MA. Immunopeptidomics of Salmonella enterica Serovar Typhimurium-Infected Pig Macrophages Genotyped for Class II Molecules. BIOLOGY 2024; 13:832. [PMID: 39452141 PMCID: PMC11505383 DOI: 10.3390/biology13100832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/05/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Salmonellosis is a zoonotic infection that has a major impact on human health; consuming contaminated pork products is the main source of such infection. Vaccination responses to classic vaccines have been unsatisfactory; that is why peptide subunit-based vaccines represent an excellent alternative. Immunopeptidomics was used in this study as a novel approach for identifying antigens coupled to major histocompatibility complex class II molecules. Three homozygous individuals having three different haplotypes (Lr-0.23, Lr-0.12, and Lr-0.21) were thus selected as donors; peripheral blood macrophages were then obtained and stimulated with Salmonella typhimurium (MOI 1:40). Although similarities were observed regarding peptide length distribution, elution patterns varied between individuals; in total, 1990 unique peptides were identified as follows: 372 for Pig 1 (Lr-0.23), 438 for Pig 2 (Lr.0.12) and 1180 for Pig 3 (Lr.0.21). Thirty-one S. typhimurium unique peptides were identified; most of the identified peptides belonged to outer membrane protein A and chaperonin GroEL. Notably, 87% of the identified bacterial peptides were predicted in silico to be elution ligands. These results encourage further in vivo studies to assess the immunogenicity of the identified peptides, as well as their usefulness as possible protective vaccine candidates.
Collapse
Affiliation(s)
- Carmen Celis-Giraldo
- Veterinary Medicine Programme, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (C.C.-G.); (J.D.)
- PhD Programme in Tropical Health and Development, Doctoral School “Studii Salamantini”, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Carlos F. Suárez
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
| | - William Agudelo
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
| | - Nieves Ibarrola
- Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, 37007 Salamanca, Spain; (N.I.); (R.D.)
| | - Rosa Degano
- Centro de Investigación del Cáncer e Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-Universidad de Salamanca, 37007 Salamanca, Spain; (N.I.); (R.D.)
| | - Jaime Díaz
- Veterinary Medicine Programme, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia; (C.C.-G.); (J.D.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca—Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Pharmacy Faculty, Universidad de Salamanca, 37007 Salamanca, Spain;
| | - Manuel A. Patarroyo
- Grupo de Investigación Básica en Biología Molecular e Inmunología (GIBBMI), Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia; (C.F.S.); (W.A.)
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| |
Collapse
|
2
|
Ocampo-Gallego RJ, Vargas YG, Flórez JCR. Genome-wide diversity, linkage disequilibrium, and admixture in the main Colombian Creole pig breeds. Trop Anim Health Prod 2024; 56:336. [PMID: 39384642 PMCID: PMC11464582 DOI: 10.1007/s11250-024-04140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 09/11/2024] [Indexed: 10/11/2024]
Abstract
Colombian Creole pigs have adapted to tropical conditions for over 500 years. They have been modified by natural and artificial selection in different regions. At present, the diversity and current introgression status are unknown. The objective was to estimate the genomic diversity, linkage disequilibrium, population structure, and admixture of four Colombian pig breeds and their relationship with other breeds worldwide. Three Colombian pig breeds (SPE-San Pedreño, 11 samples; ZUN-Zungo, 11 samples; CM-Casco de Mula, ten samples) from the conservation nucleus and one biotype not recognized as a breed (CCH-Criollo Chocoano, seven samples) were genotyped using the Illumina GGP-Porcine80K chip. Open-access data from seven international breeds were also included. Colombian Creole pigs showed moderate genetic differentiation (FST 0.14) globally, but several groups of animals separated, suggesting local clustering due to geographical isolation or different founding effects. Colombian Creole pigs showed breed imprinting and specific grouping in all analyses except for CCH, which, like the Ecuadorian Creole, was a cluster of admixtures. The Colombian Creole pigs revealed a significant relationship with the Iberian pig and some other breeds to varying degrees. However, good maintenance of the conservation nucleus was evidenced. Potential adaptive genes, mainly related to immunological functions, were found, according to FST and pcadapt analyses. This study provides a foundation and scientific data for policy decisions on zoogenetic resources.
Collapse
Affiliation(s)
- Ricardo José Ocampo-Gallego
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia. Nus Research Center, Corregimiento San José del Nus, San Roque, CP. 250047, Antioquia, Colombia.
| | - Yolanda Gómez Vargas
- Corporación Colombiana de Investigación Agropecuaria - Agrosavia. Nus Research Center, Corregimiento San José del Nus, San Roque, CP. 250047, Antioquia, Colombia
| | - Juan Carlos Rincón Flórez
- Palmira Zoogenetic Resources Research Group, Deparment of Animal Science, Universidad Nacional de Colombia, Palmira, Valle del Cauca, Colombia
| |
Collapse
|
3
|
Celis-Giraldo C, Ordoñez D, Díaz-Arévalo D, Bohórquez MD, Ibarrola N, Suárez CF, Rodríguez K, Yepes Y, Rodríguez A, Avendaño C, López-Abán J, Manzano-Román R, Patarroyo MA. Identifying major histocompatibility complex class II-DR molecules in bovine and swine peripheral blood monocyte-derived macrophages using mAb-L243. Vaccine 2024; 42:3445-3454. [PMID: 38631956 DOI: 10.1016/j.vaccine.2024.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/04/2024] [Accepted: 04/13/2024] [Indexed: 04/19/2024]
Abstract
Major histocompatibility complex class II (MHC-II) molecules are involved in immune responses against pathogens and vaccine candidates' immunogenicity. Immunopeptidomics for identifying cancer and infection-related antigens and epitopes have benefited from advances in immunopurification methods and mass spectrometry analysis. The mouse anti-MHC-II-DR monoclonal antibody L243 (mAb-L243) has been effective in recognising MHC-II-DR in both human and non-human primates. It has also been shown to cross-react with other animal species, although it has not been tested in livestock. This study used mAb-L243 to identify Staphylococcus aureus and Salmonella enterica serovar Typhimurium peptides binding to cattle and swine macrophage MHC-II-DR molecules using flow cytometry, mass spectrometry and two immunopurification techniques. Antibody cross-reactivity led to identifying expressed MHC-II-DR molecules, together with 10 Staphylococcus aureus peptides in cattle and 13 S. enterica serovar Typhimurium peptides in swine. Such data demonstrates that MHC-II-DR expression and immunocapture approaches using L243 mAb represents a viable strategy for flow cytometry and immunopeptidomics analysis of bovine and swine antigen-presenting cells.
Collapse
Affiliation(s)
- Carmen Celis-Giraldo
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia; PhD Programme in Tropical Health and Development, Doctoral School "Studii Salamantini", Universidad de Salamanca, Salamanca, Spain
| | - Diego Ordoñez
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia; PhD Programme in Tropical Health and Development, Doctoral School "Studii Salamantini", Universidad de Salamanca, Salamanca, Spain
| | - Diana Díaz-Arévalo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Michel D Bohórquez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; MSc Programme in Microbiology, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Nieves Ibarrola
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), CSIC-University of Salamanca, Salamanca, Spain
| | - Carlos F Suárez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Kewin Rodríguez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Yoelis Yepes
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Alexander Rodríguez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Catalina Avendaño
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, National Medical Center, Duarte, CA, United States
| | - Julio López-Abán
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca - Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Pharmacy Faculty, Universidad de Salamanca, C/ L. Méndez Nieto s/n, 37007 Salamanca, Spain
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), IBSAL-CIETUS (Instituto de Investigación Biomédica de Salamanca - Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca), Pharmacy Faculty, Universidad de Salamanca, C/ L. Méndez Nieto s/n, 37007 Salamanca, Spain
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia; Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
4
|
Kang M, Ahn B, Youk S, Jeon H, Soundarajan N, Cho ES, Park W, Park C. Individual and population diversity of 20 representative olfactory receptor genes in pigs. Sci Rep 2023; 13:18668. [PMID: 37907519 PMCID: PMC10618239 DOI: 10.1038/s41598-023-45784-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023] Open
Abstract
Understanding the influence of genetic variations in olfactory receptor (OR) genes on the olfaction-influenced phenotypes such as behaviors, reproduction, and feeding is important in animal biology. However, our understanding of the complexity of the OR subgenome is limited. In this study, we analyzed 1120 typing results of 20 representative OR genes belonging to 13 OR families on 14 pig chromosomes from 56 individuals belonging to seven different breeds using a sequence-based OR typing method. We showed that the presence of copy number variations, conservation of locus-specific diversity, abundance of breed-specific alleles, presence of a loss-of-function allele, and low-level purifying selection in pig OR genes could be common characteristics of OR genes in mammals. The observed nucleotide sequence diversity of pig ORs was higher than that of dogs. To the best of our knowledge, this is the first report on the individual- or population-level characterization of a large number of OR family genes in livestock species.
Collapse
Affiliation(s)
- Mingue Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Byeongyong Ahn
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Seungyeon Youk
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Hyoim Jeon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | | | - Eun-Seok Cho
- Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Woncheoul Park
- Rural Development Administration, National Institute of Animal Science, Wanju, 55365, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea.
| |
Collapse
|
5
|
Celis-Giraldo CT, López-Abán J, Muro A, Patarroyo MA, Manzano-Román R. Nanovaccines against Animal Pathogens: The Latest Findings. Vaccines (Basel) 2021; 9:vaccines9090988. [PMID: 34579225 PMCID: PMC8472905 DOI: 10.3390/vaccines9090988] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 02/06/2023] Open
Abstract
Nowadays, safe and efficacious vaccines represent powerful and cost-effective tools for global health and economic growth. In the veterinary field, these are undoubtedly key tools for improving productivity and fighting zoonoses. However, cases of persistent infections, rapidly evolving pathogens having high variability or emerging/re-emerging pathogens for which no effective vaccines have been developed point out the continuing need for new vaccine alternatives to control outbreaks. Most licensed vaccines have been successfully used for many years now; however, they have intrinsic limitations, such as variable efficacy, adverse effects, and some shortcomings. More effective adjuvants and novel delivery systems may foster real vaccine effectiveness and timely implementation. Emerging vaccine technologies involving nanoparticles such as self-assembling proteins, virus-like particles, liposomes, virosomes, and polymeric nanoparticles offer novel, safe, and high-potential approaches to address many vaccine development-related challenges. Nanotechnology is accelerating the evolution of vaccines because nanomaterials having encapsulation ability and very advantageous properties due to their size and surface area serve as effective vehicles for antigen delivery and immunostimulatory agents. This review discusses the requirements for an effective, broad-coverage-elicited immune response, the main nanoplatforms for producing it, and the latest nanovaccine applications for fighting animal pathogens.
Collapse
Affiliation(s)
- Carmen Teresa Celis-Giraldo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá 111166, Colombia
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá 111321, Colombia;
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Health Sciences Division, Main Campus, Universidad Santo Tomás, Bogotá 110231, Colombia
- Correspondence: (M.A.P.); (R.M.-R.)
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Research Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37007 Salamanca, Spain; (J.L.-A.); (A.M.)
- Correspondence: (M.A.P.); (R.M.-R.)
| |
Collapse
|