1
|
Zhu Y, Li SY, Zhang LJ, Lei B, Wang YC, Wang Z. Neuroprotection of the P2X7 receptor antagonist A740003 on retinal ganglion cells in experimental glaucoma. Neuroreport 2024; 35:822-831. [PMID: 38973496 DOI: 10.1097/wnr.0000000000002071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The aim of this study was to explore the neuroprotective effects of the P2X7 receptor antagonist A740003 on retinal ganglion cells (RGCs) in chronic intraocular hypertension (COH) experimental glaucoma mouse model. Bioinformatics was used to analyze the glaucoma-related genes. Western blot, real-time fluorescence quantitative PCR, and immunofluorescence staining techniques were employed to explore the mechanisms underlying the neuroprotective effects of A740003 on RGCs in COH retinas. Bioinformatic analysis revealed that oxidative stress, neuroinflammation, and cell apoptosis were highly related to the pathogenesis of glaucoma. In COH retinas, intraocular pressure elevation significantly increased the levels of translocator protein, a marker of microglial activation, which could be reversed by intravitreal preinjection of A740003. A740003 also suppressed the increased mRNA levels of proinflammatory cytokines interleukin (IL) 1β and tumor necrosis factor α in COH retinas. In addition, although the mRNA levels of anti-inflammatory cytokine IL-4 and IL-10 were kept unchanged in COH retinas, administration of A740003 could increase their levels. The mRNA and protein levels of Bax and cleaved caspase-3 were increased in COH retinas, which could be partially reversed by A740003, while the levels of Bcl-2 kept unchanged in COH retinas with or without the injections of A740003. Furthermore, A740003 partially attenuated the reduction in the numbers of Brn-3a-positive RGCs in COH mice. A740003 could provide neuroprotective roles on RGCs by inhibiting the microglia activation, attenuating the retinal inflammatory response, reducing the apoptosis of RGCs, and enhancing the survival of RGCs in COH experimental glaucoma.
Collapse
Affiliation(s)
- Yan Zhu
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
| | - Shu-Ying Li
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai
| | - Lu-Jia Zhang
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
| | - Bo Lei
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
- Henan Eye Institute, Henan Eye Hospital, Henan Academy of Innovations in Medical Science, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yong-Chen Wang
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
| | - Zhongfeng Wang
- Institute of Neuroscience and Third Affiliated Hospital, Zhengzhou University
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai
| |
Collapse
|
2
|
Hu H, Nie D, Fang M, He W, Zhang J, Liu X, Zhang G. Müller cells under hydrostatic pressure modulate retinal cell survival via TRPV1/PLCγ1 complex-mediated calcium influx in experimental glaucoma. FEBS J 2024; 291:2703-2714. [PMID: 38390745 DOI: 10.1111/febs.17075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/27/2023] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Glaucoma, an irreversible blinding eye disease, is currently unclear whose pathological mechanism is. This study investigated how transient receptor potential cation channel subfamily V member 1 (TRPV1), 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-1 (PLCγ1), and P2X purinoceptor 7 (P2X7) modulate the levels of intracellular calcium ions (Ca2+) and adenosine triphosphate (ATP) in Müller cells and retinal ganglion cells (RGCs) under conditions of elevated intraocular pressure (IOP). Müller cells were maintained at hydrostatic pressure (HP). TRPV1- and PLCG1-silenced Müller cells and P2X7-silenced RGCs were constructed by transfection with short interfering RNA (siRNAs). RGCs were cultured with the conditioned media of Müller cells under HP. A mouse model of chronic ocular hypertension (COH) was established and used to investigate the role of TRPV1 in RGCs in vivo. Müller cells and RGCs were analyzed by ATP release assays, intracellular calcium assays, CCK-8 assays, EdU (5-ethynyl-2'-deoxyuridine) staining, TUNEL staining, flow cytometry, and transmission electron microscopy. In vivo changes in inner retinal function were evaluated by hematoxylin and eosin (H&E) staining and TUNEL staining. Western blot analyses were performed to measure the levels of related proteins. Our data showed that HP increased the levels of ATP and Ca2+ influx in Müller cells, and those increases were accompanied by the upregulation of TRPV1 and p-PLCγ1 expression. Suppression of TRPV1 or PLCG1 expression in Müller cells significantly decreased the ATP levels and intracellular Ca2+ accumulation induced by HP. Knockdown of TRPV1, PLCG1, or P2X7 significantly decreased apoptosis and autophagy in RGCs cultured in the conditioned media of HP-treated Müller cells. Moreover, TRPV1 silencing decreased RGC apoptosis and autophagy in the in vivo model of COH. Collectively, inhibition of TRPV1/PLCγ1 and P2X7 expression may be a useful therapeutic strategy for managing RGC death in glaucoma.
Collapse
Affiliation(s)
- Huiling Hu
- Department of Cataract, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Danyao Nie
- Department of Cataract, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Min Fang
- Department of Glaucoma, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Wenling He
- Department of Cataract, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Jing Zhang
- Department of Cataract, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Xinhua Liu
- Department of Cataract, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| | - Guoming Zhang
- Department of Fundus Disease, Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, China
| |
Collapse
|
3
|
Soucy JR, Kriukov E, Oswald J, Phay M, Masland J, Pernstich C, Baranov P. Sustained neurotrophic factor cotreatment enhances donor and host retinal ganglion cell survival in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583961. [PMID: 38558999 PMCID: PMC10979869 DOI: 10.1101/2024.03.07.583961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Retinal ganglion cells (RGCs) lack regenerative capacity in mammals, and their degeneration in glaucoma leads to irreversible blindness. The transplantation of stem cell-derived RGCs lacks clinically relevant effect due to insufficient survival and integration of donor cells. We hypothesize that the retinal microenvironment plays a critical role in this process, and we can engineer a more acceptable setting for transplantation. Since the adult mammalian retina does not have regenerative capacity, we turned to the developing human retina to reconstruct cell-cell interactions at a single-cell level. We established a human fetal retina atlas by integrating currently available single-cell RNA sequencing datasets of human fetal retinas into a unified resource. We align RGC transcriptomes in pseudotime to map RGC developmental fate trajectories against the broader timeline of retinal development. Through this analysis, we identified brain-derived neurotrophic factor (BDNF) and glial-derived neurotrophic factor (GDNF) as key factors in RGC survival, highly expressed during fetal development but significantly reduced in adulthood despite the persistence of their receptors. To demonstrate the practical application of these findings, we show that using a slow-release formulation of BDNF and GDNF enhances RGC differentiation, survival, and function in vitro and improves RGC transplantation outcomes in a mouse model. BNDF/GDNF co-treatment not only increased survival and coverage of donor RGCs within the retina but also showed neuroprotective effects on host RGCs, preserving retinal function in a model of optic neuropathy. Altogether, our findings suggest that manipulating the retinal microenvironment with slow-release neurotrophic factors holds promise in regenerative medicine for treating glaucoma and other optic neuropathies. This approach not only improves donor cell survival and integration but also provides a neuroprotective benefit to host cells, indicating a significant advancement for glaucoma therapies.
Collapse
|
4
|
van Koeverden AK, Afiat BC, Nguyen CT, Bui BV, Lee PY. Understanding how ageing impacts ganglion cell susceptibility to injury in glaucoma. Clin Exp Optom 2024; 107:147-155. [PMID: 37980904 DOI: 10.1080/08164622.2023.2279734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/31/2023] [Indexed: 11/21/2023] Open
Abstract
Glaucoma is a leading cause of blindness worldwide, with a marked increase in prevalence with advancing age. Due to the multifactorial nature of glaucoma pathogenesis, dissecting how ageing impacts upon glaucoma risk requires analysis and synthesis of evidence from a vast literature. While there is a wealth of human clinical studies examining glaucoma pathogenesis and why older patients have increased risk, many aspects of the disease such as adaptations of retinal ganglion cells to stress, autophagy and the role of glial cells in glaucoma, require the use of animal models to study the complex cellular processes and interactions. Additionally, the accelerated nature of ageing in rodents facilitates the longitudinal study of changes that would not be feasible in human clinical studies. This review article examines evidence derived predominantly from rodent models on how the ageing process impacts upon various aspects of glaucoma pathology from the retinal ganglion cells themselves, to supporting cells and tissues such as glial cells, connective tissue and vasculature, in addition to oxidative stress and autophagy. An improved understanding of how ageing modifies these factors may lead to the development of different therapeutic strategies that target specific risk factors or processes involved in glaucoma.
Collapse
Affiliation(s)
- Anna K van Koeverden
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Brianna C Afiat
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Christine To Nguyen
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Bang V Bui
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pei Ying Lee
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
5
|
Olivier E, Rat P. Role of Oxysterols in Ocular Degeneration Mechanisms and Involvement of P2X7 Receptor. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:277-292. [PMID: 38036885 DOI: 10.1007/978-3-031-43883-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Ocular degeneration, including cataracts, glaucoma, macular degeneration, and diabetic retinopathy, is a major public health challenge, as it affects the quality of life of millions of people worldwide and, in its advanced stages, leads to blindness. Ocular degeneration, although it can affect different parts of the eye, shares common characteristics such as oxysterols and the P2X7 receptor. Indeed, oxysterols, which are cholesterol derivatives, are associated with ocular degeneration pathogenesis and trigger inflammation and cell death pathways. Activation of the P2X7 receptor is also linked to ocular degeneration and triggers the same pathways. In age-related macular degeneration, these two key players have been associated, but further studies are needed to extrapolate this interrelationship to other ocular degenerations.
Collapse
Affiliation(s)
| | - Patrice Rat
- Université Paris Cité, CNRS, CiTCoM, Paris, France
| |
Collapse
|
6
|
Pasák M, Vanišová M, Tichotová L, Křížová J, Ardan T, Nemesh Y, Čížková J, Kolesnikova A, Nyshchuk R, Josifovska N, Lytvynchuk L, Kolko M, Motlík J, Petrovski G, Hansíková H. Mitochondrial Dysfunction in a High Intraocular Pressure-Induced Retinal Ischemia Minipig Model. Biomolecules 2022; 12:biom12101532. [PMID: 36291741 PMCID: PMC9599919 DOI: 10.3390/biom12101532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Purpose: Retinal ischemia (RI) and progressive neuronal death are sight-threatening conditions. Mitochondrial (mt) dysfunction and fusion/fission processes have been suggested to play a role in the pathophysiology of RI. This study focuses on changes in the mt parameters of the neuroretina, retinal pigment epithelium (RPE) and choroid in a porcine high intraocular pressure (IOP)-induced RI minipig model. Methods: In one eye, an acute IOP elevation was induced in minipigs and compared to the other control eye. Activity and amount of respiratory chain complexes (RCC) were analyzed by spectrophotometry and Western blot, respectively. The coenzyme Q10 (CoQ10) content was measured using HPLC, and the ultrastructure of the mt was studied via transmission electron microscopy. The expression of selected mt-pathway genes was determined by RT-PCR. Results: At a functional level, increased RCC I activity and decreased total CoQ10 content were found in RPE cells. At a protein level, CORE2, a subunit of RCC III, and DRP1, was significantly decreased in the neuroretina. Drp1 and Opa1, protein-encoding genes responsible for mt quality control, were decreased in most of the samples from the RPE and neuroretina. Conclusions: The eyes of the minipig can be considered a potential RI model to study mt dysfunction in this disease. Strategies targeting mt protection may provide a promising way to delay the acute damage and onset of RI.
Collapse
Affiliation(s)
- Michael Pasák
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12801 Prague, Czech Republic
| | - Marie Vanišová
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12801 Prague, Czech Republic
| | - Lucie Tichotová
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 277 21 Libechov, Czech Republic
| | - Jana Křížová
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12801 Prague, Czech Republic
| | - Taras Ardan
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 277 21 Libechov, Czech Republic
| | - Yaroslav Nemesh
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 277 21 Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University,12808 Prague, Czech Republic
| | - Jana Čížková
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 277 21 Libechov, Czech Republic
| | - Anastasiia Kolesnikova
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 277 21 Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University,12808 Prague, Czech Republic
| | - Ruslan Nyshchuk
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 277 21 Libechov, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University,12808 Prague, Czech Republic
| | - Natasha Josifovska
- Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway
| | - Lyubomyr Lytvynchuk
- Department of Ophthalmology, Justus Liebig University, University Hospital Giessen and Marburg GmbH, 35392 Giessen, Germany
- Karl Landsteiner Institute for Retinal Research and Imaging, 1030 Vienna, Austria
| | - Miriam Kolko
- Eye Translational Research Unit, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Ophthalmology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Jan Motlík
- Laboratory of Cell Regeneration and Cell Plasticity, Institute of Animal Physiology and Genetics AS CR, 277 21 Libechov, Czech Republic
| | - Goran Petrovski
- Center for Eye Research, Department of Ophthalmology, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo and Oslo University Hospital, 0450 Oslo, Norway
- Department of Ophthalmology, University Hospital of Split and University of Split, 21000 Split, Croatia
| | - Hana Hansíková
- Laboratory for Study of Mitochondrial Disorders, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 12801 Prague, Czech Republic
| |
Collapse
|
7
|
Lee PY, Zhao D, Wong VHY, Chrysostomou V, Crowston JG, Bui BV. The Effect of Aging on Retinal Function and Retinal Ganglion Cell Morphology Following Intraocular Pressure Elevation. Front Aging Neurosci 2022; 14:859265. [PMID: 35645783 PMCID: PMC9133539 DOI: 10.3389/fnagi.2022.859265] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Aging and elevated intraocular pressure (IOP) are two major risk factors for glaucomatous optic neuropathy; a condition characterized by the selective, progressive injury, and subsequent loss of retinal ganglion cells (RGCs). We examined how age modified the capacity for RGCs to functionally recover following a reproducible IOP elevation (50 mmHg for 30 min). We found that RGC functional recovery (measured using electroretinography) was complete by 7 days in 3-month-old mice but was delayed in 12-month-old mice until 14 days. At the 7-day recovery endpoint when RGC function had recovered in young but not older eyes, we examined RGC structural responses to IOP-related stress by analyzing RGC dendritic morphology. ON-RGC cell volume was attenuated following IOP elevation in both young and older mice. We also found that following IOP elevation OFF-RGC dendritic morphology became less complex per cell volume in young mice, an effect that was not observed in older eyes. Our data suggest that adaptations in OFF-RGCs in young eyes were associated with better functional recovery 7 days after IOP elevation. Loss of RGC cellular adaptations may account for delayed functional recovery in older eyes.
Collapse
Affiliation(s)
- Pei Ying Lee
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Da Zhao
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Vickie H. Y. Wong
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia
| | - Vicki Chrysostomou
- Singapore Eye Research Institute, Singapore, Singapore,Duke-NUS Medical School, Singapore, Singapore
| | - Jonathan G. Crowston
- Singapore Eye Research Institute, Singapore, Singapore,Duke-NUS Medical School, Singapore, Singapore
| | - Bang V. Bui
- Department of Optometry and Vision Sciences, University of Melbourne, Parkville, VIC, Australia,*Correspondence: Bang V. Bui,
| |
Collapse
|
8
|
Pan L, Sze YH, Yang M, Tang J, Zhao S, Yi I, To CH, Lam C, Chen DF, Cho KS, Do CW. Baicalein—A Potent Pro-Homeostatic Regulator of Microglia in Retinal Ischemic Injury. Front Immunol 2022; 13:837497. [PMID: 35265083 PMCID: PMC8899187 DOI: 10.3389/fimmu.2022.837497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/26/2022] [Indexed: 12/20/2022] Open
Abstract
Retinal ischemia is a common cause of many retinal diseases, leading to irreversible vision impairment and blindness. Excessive neuroinflammation, including microglial activation and T-cell responses, has been identified as a critical factor associated with neurodegeneration in retinal ischemia. Baicalein is a natural flavonoid reported to have broad anti-inflammatory and neuroprotective bioactivities. Herein, the effects of baicalein on microglia activation in vitro and in vivo were investigated. We found that baicalein exhibited robust anti-inflammatory effect on cultured human and mouse microglia, as demonstrated by decreased induction of pro-inflammatory cytokines and the phosphorylation of phosphoinositide 3-kinase (PI3K) and nuclear factor kappa B (NFκB). Proteomic analysis further unraveled baicalein’s effect on modulating IL-17 signaling pathways and its upstream regulator IL-1β. Intravitreal administration of baicalein in the mouse model of retinal ischemia/reperfusion (I/R) injury attenuated microglial activation and retinal T-cell infiltration, particularly the T helper 17 cells. Additionally, baicalein was shown to exert neuroprotective effects by significantly reducing the retinal ganglion cell (RGC) loss after I/R injury, leading to an improved retinal function and spatial vision. These results suggest that baicalein, a natural flavonoid, acts as a negative regulator of activated microglia and immune responses both in vitro and in vivo, effectively alleviating neurodegeneration in retinal I/R injury. This finding indicates that baicalein could be a potential therapeutic agent against currently incurable degenerative retinal diseases.
Collapse
Affiliation(s)
- Li Pan
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Ying Hon Sze
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
| | - Menglu Yang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Jing Tang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Siming Zhao
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Irvin Yi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Chi-Ho To
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong, Hong Kong SAR, China
| | - Chuen Lam
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, China
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Dong Feng Chen, ; Kin-Sang Cho, ; Chi-Wai Do,
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
- *Correspondence: Dong Feng Chen, ; Kin-Sang Cho, ; Chi-Wai Do,
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, China
- Centre for Eye and Vision Research (CEVR), Hong Kong, Hong Kong SAR, China
- *Correspondence: Dong Feng Chen, ; Kin-Sang Cho, ; Chi-Wai Do,
| |
Collapse
|
9
|
Ingensiep C, Schaffrath K, Walter P, Johnen S. Effects of Hydrostatic Pressure on Electrical Retinal Activity in a Multielectrode Array-Based ex vivo Glaucoma Acute Model. Front Neurosci 2022; 16:831392. [PMID: 35177963 PMCID: PMC8845467 DOI: 10.3389/fnins.2022.831392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is a heterogeneous eye disease causing atrophy of the optic nerve head (ONH). The optic nerve is formed by the axons of the retinal ganglion cells (RGCs) that transmit visual input to the brain. The progressive RGC loss during glaucoma leads to irreversible vision loss. An elevated intraocular pressure (IOP) is described as main risk factor in glaucoma. In this study, a multielectrode array (MEA)-based ex vivo glaucoma acute model was established and the effects of hydrostatic pressure (10, 30, 60, and 90 mmHg) on the functionality and survival of adult male and female wild-type mouse (C57BL/6) retinae were investigated. Spontaneous activity, response rate to electrical and light stimulation, and bursting behavior of RGCs was analyzed prior, during, and after pressure stress. No pressure related effects on spontaneous firing and on the response rate of the RGCs were observed. Even a high pressure level (90 mmHg for 2 h) did not disturb the RGC functionality. However, the cells’ bursting behavior significantly changed under 90 mmHg. The number of spikes in bursts doubled during pressure application and stayed on a high level after pressure stress. Addition of the amino sulfonic acid taurine (1 mM) showed a counteracting effect. OFF ganglion cells did not reveal an increase in bursts under pressure stress. Live/dead staining after pressure application showed no significant changes in RGC survival. The findings of our ex vivo model suggest that RGCs are tolerant toward high, short-time pressure stress.
Collapse
|
10
|
Campagno KE, Lu W, Jassim AH, Albalawi F, Cenaj A, Tso HY, Clark SP, Sripinun P, Gómez NM, Mitchell CH. Rapid morphologic changes to microglial cells and upregulation of mixed microglial activation state markers induced by P2X7 receptor stimulation and increased intraocular pressure. J Neuroinflammation 2021; 18:217. [PMID: 34544431 PMCID: PMC8454080 DOI: 10.1186/s12974-021-02251-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The identification of endogenous signals that lead to microglial activation is a key step in understanding neuroinflammatory cascades. As ATP release accompanies mechanical strain to neural tissue, and as the P2X7 receptor for ATP is expressed on microglial cells, we examined the morphological and molecular consequences of P2X7 receptor stimulation in vivo and in vitro and investigated the contribution of the P2X7 receptor in a model of increased intraocular pressure (IOP). METHODS In vivo experiments involved intravitreal injections and both transient and sustained elevation of IOP. In vitro experiments were performed on isolated mouse retinal and brain microglial cells. Morphological changes were quantified in vivo using Sholl analysis. Expression of mRNA for M1- and M2-like genes was determined with qPCR. The luciferin/luciferase assay quantified retinal ATP release while fura-2 indicated cytoplasmic calcium. Microglial migration was monitored with a Boyden chamber. RESULTS Sholl analysis of Iba1-stained cells showed retraction of microglial ramifications 1 day after injection of P2X7 receptor agonist BzATP into mouse retinae. Mean branch length of ramifications also decreased, while cell body size and expression of Nos2, Tnfa, Arg1, and Chil3 mRNA increased. BzATP induced similar morphological changes in ex vivo tissue isolated from Cx3CR1+/GFP mice, suggesting recruitment of external cells was unnecessary. Immunohistochemistry suggested primary microglial cultures expressed the P2X7 receptor, while functional expression was demonstrated with Ca2+ elevation by BzATP and block by specific antagonist A839977. BzATP induced process retraction and cell body enlargement within minutes in isolated microglial cells and increased Nos2 and Arg1. While ATP increased microglial migration, this required the P2Y12 receptor and not P2X7 receptor. Transient elevation of IOP led to microglial process retraction, cell body enlargement, and gene upregulation paralleling changes observed with BzATP injection, in addition to retinal ATP release. Pressure-dependent changes were reduced in P2X7-/- mice. Death of retinal ganglion cells accompanied increased IOP in C57Bl/6J, but not P2X7-/- mice, and neuronal loss showed some association with microglial activation. CONCLUSIONS P2X7 receptor stimulation induced rapid morphological activation of microglial cells, including process retraction and cell body enlargement, and upregulation of markers linked to both M1- and M2-type activation. Parallel responses accompanied IOP elevation, suggesting ATP release and P2X7 receptor stimulation influence the early microglial response to increased pressure.
Collapse
Affiliation(s)
- Keith E Campagno
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA
| | - Wennan Lu
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA
| | - Assraa Hassan Jassim
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA
| | - Farraj Albalawi
- Department of Orthodontics, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Preventive Dental Sciences, College of Dentistry, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Aurora Cenaj
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA
| | - Huen-Yee Tso
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA
| | - Sophia P Clark
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA
| | - Puttipong Sripinun
- Department of Orthodontics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Néstor Más Gómez
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA
| | - Claire H Mitchell
- Department of Basic and Translational Science, University of Pennsylvania, 240 S. 40th St, Philadelphia, PA, 19104, USA.
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
Physalin pool from Physalis angulata L. leaves and physalin D inhibit P2X7 receptor function in vitro and acute lung injury in vivo. Biomed Pharmacother 2021; 142:112006. [PMID: 34392085 DOI: 10.1016/j.biopha.2021.112006] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 11/23/2022] Open
Abstract
P2X7 receptor promotes inflammatory response and neuropathic pain. New drugs capable of impairing inflammation and pain-reducing adverse effects extracted from plant extracts have been studied. Physalis angulate L. possesses traditional uses and exhibits antiparasitic, anti-inflammatory, antimicrobial, antinociceptive, antimalarial, antileishmanial, immunosuppressive, antiasthmatic. diuretic, and antitumor activities. The most representative phytochemical constituents identified with medicinal importance are the physalins and withanolides. However, the mechanism of anti-inflammatory action is scarce. Although some physalins and withanolides subtypes have anti-inflammatory activity, only four physalins subtypes (B, D, F, and G) have further studies. Therefore, we evaluated the crude ethanolic extract enriched with physalins B, D, F, and G from P. angulata leaves, a pool containing the physalins B, D, F, G, and the physalins individually, as P2X7 receptor antagonists. For this purpose, we evaluated ATP-induced dye uptake, macroscopic currents, and interleukin 1-β (IL-1β) in vitro. The crude extract and pool dose-dependently inhibited P2X7 receptor function. Thus, physalin B, D, F, and G individually evaluated for 5'-triphosphate (ATP)-induced dye uptake assay, whole-cell patch-clamp, and cytokine release showed distinct antagonist levels. Physalin D displayed higher potency and efficacy than physalin B, F, and G for all these parameters. In vivo mice model as ATP-induced paw edema was potently inhibited for physalin D, in contrast to physalin B, F, and G. ATP and lipopolysaccharide (LPS)-induced pleurisy in mice were reversed for physalin D treatment. Molecular modeling and computational simulation predicted the intermolecular interactions between the P2X7 receptor and physalin derivatives. In silico results indicated physalin D and F as a potent allosteric P2X7 receptor antagonist. These data confirm physalin D as a promisor source for developing a new P2X7 receptor antagonist with anti-inflammatory action.
Collapse
|