1
|
Parvand M, Liang JJH, Bozorgmehr T, Born D, Luna Cortes A, Rankin CH. A familial Alzheimer's disease associated mutation in presenilin-1 mediates amyloid-beta independent cell specific neurodegeneration. PLoS One 2024; 19:e0289435. [PMID: 39240956 PMCID: PMC11379242 DOI: 10.1371/journal.pone.0289435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/23/2024] [Indexed: 09/08/2024] Open
Abstract
Mutations in the presenilin (PS) genes are a predominant cause of familial Alzheimer's disease (fAD). An ortholog of PS in the genetic model organism Caenorhabditis elegans (C. elegans) is sel-12. Mutations in the presenilin genes are commonly thought to lead to fAD by upregulating the expression of amyloid beta (Aβ), however this hypothesis has been challenged by recent evidence. As C. elegans lack amyloid beta (Aβ), the goal of this work was to examine Aβ-independent effects of mutations in sel-12 and PS1/PS2 on behaviour and sensory neuron morphology across the lifespan in a C. elegans model. Olfactory chemotaxis experiments were conducted on sel-12(ok2078) loss-of-function mutant worms. Adult sel-12 mutant worms showed significantly lower levels of chemotaxis to odorants compared to wild-type worms throughout their lifespan, and this deficit increased with age. The chemotaxis phenotype in sel-12 mutant worms is rescued by transgenic over-expression of human wild-type PS1, but not the classic fAD-associated variant PS1C410Y, when expression was driven by either the endogenous sel-12 promoter (Psel-12), a pan-neuronal promoter (Primb-1), or by a promoter whose primary expression was in the sensory neurons responsible for the chemotaxis behavior (Psra-6, Podr-10). The behavioural phenotype was also rescued by over-expressing an atypical fAD-linked mutation in PS1 (PS1ΔS169) that has been reported to leave the Notch pathway intact. An examination of the morphology of polymodal nociceptive (ASH) neurons responsible for the chemotaxis behavior also showed increased neurodegeneration over time in sel-12 mutant worms that could be rescued by the same transgenes that rescued the behaviour, demonstrating a parallel with the observed behavioral deficits. Thus, we report an Aβ-independent neurodegeneration in C. elegans that was rescued by cell specific over-expression of wild-type human presenilin.
Collapse
Affiliation(s)
- Mahraz Parvand
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph J H Liang
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tahereh Bozorgmehr
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dawson Born
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alvaro Luna Cortes
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catharine H Rankin
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Menor-Flores M, Vega-Rodríguez MA. A protein-protein interaction network aligner study in the multi-objective domain. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108188. [PMID: 38657382 DOI: 10.1016/j.cmpb.2024.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND AND OBJECTIVE The protein-protein interaction (PPI) network alignment has proven to be an efficient technique in the diagnosis and prevention of certain diseases. However, the difficulty in maximizing, at the same time, the two qualities that measure the goodness of alignments (topological and biological quality) has led aligners to produce very different alignments. Thus making a comparative study among alignments of such different qualities a big challenge. Multi-objective optimization is a computer method, which is very powerful in this kind of contexts because both conflicting qualities are considered together. Analysing the alignments of each PPI network aligner with multi-objective methodologies allows you to visualize a bigger picture of the alignments and their qualities, obtaining very interesting conclusions. This paper proposes a comprehensive PPI network aligner study in the multi-objective domain. METHODS Alignments from each aligner and all aligners together were studied and compared to each other via Pareto dominance methodologies. The best alignments produced by each aligner and all aligners together for five different alignment scenarios were displayed in Pareto front graphs. Later, the aligners were ranked according to the topological, biological, and combined quality of their alignments. Finally, the aligners were also ranked based on their average runtimes. RESULTS Regarding aligners constructing the best overall alignments, we found that SAlign, BEAMS, SANA, and HubAlign are the best options. Additionally, the alignments of best topological quality are produced by: SANA, SAlign, and HubAlign aligners. On the contrary, the aligners returning the alignments of best biological quality are: BEAMS, TAME, and WAVE. However, if there are time constraints, it is recommended to select SAlign to obtain high topological quality alignments and PISwap or SAlign aligners for high biological quality alignments. CONCLUSIONS The use of the SANA aligner is recommended for obtaining the best alignments of topological quality, BEAMS for alignments of the best biological quality, and SAlign for alignments of the best combined topological and biological quality. Simultaneously, SANA and BEAMS have above-average runtimes. Therefore, it is suggested, if necessary due to time restrictions, to choose other, faster aligners like SAlign or PISwap whose alignments are also of high quality.
Collapse
Affiliation(s)
- Manuel Menor-Flores
- Escuela Politécnica, Universidad de Extremadura,(1) Campus Universitario s/n, 10003 Cáceres, Spain.
| | - Miguel A Vega-Rodríguez
- Escuela Politécnica, Universidad de Extremadura,(1) Campus Universitario s/n, 10003 Cáceres, Spain.
| |
Collapse
|
3
|
Sharma A, Ewald CY. Clearance of extracellular human amyloid-β aggregates in C. elegans by nutraceutical and pharmaceutical interventions. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.000907. [PMID: 38287930 PMCID: PMC10823790 DOI: 10.17912/micropub.biology.000907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024]
Abstract
Numerous anti-amyloid therapies have seen recent clinical development and approval, such as the monoclonal antibodies aducanumab and lecanemab. However, in Alzheimer's disease patients, amyloid-β (Aβ) plaques are found embedded in the extracellular matrix and surrounded by collagens, which might hinder these antibodies from targeting the plaques. We reasoned that various different nutraceutical and pharmaceutical agents might induce collagen and extracellular matrix turnover and removal of these collagen-embedded amyloid-β (Aβ) plaques. To address this idea, here, we used a transgenic C. elegans strain, LSD2104 , expressing fluorescent human Aβ 1-42 as an in-vivo model for secreted amyloid aggregation in the extracellular matrix. We performed a screen of various nutraceuticals and pharmaceuticals along with different combinations, and we found that quercetin 350 µM and rifampicin 75 µM successfully cleared the extracellular amyloid plaque burden compared to the 0.2% DMSO control group, with a combination of the two agents producing the maximum effect compared to either drug alone. These results may implicate the exploration of combination therapeutics of nutraceuticals and pharmaceuticals in the clearance of amyloid-β (Aβ) plaques in Alzheimer's disease.
Collapse
Affiliation(s)
- Arastu Sharma
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, 8603 Schwerzenbach-Zürich, Switzerland
- Johns Hopkins University, Baltimore, Maryland, United States
| | - Collin Y Ewald
- Eidgenössische Technische Hochschule Zürich, Department of Health Sciences and Technology, Institute of Translational Medicine, 8603 Schwerzenbach-Zürich, Switzerland
| |
Collapse
|
4
|
Jongsma E, Goyala A, Mateos JM, Ewald CY. Removal of extracellular human amyloid beta aggregates by extracellular proteases in C. elegans. eLife 2023; 12:e83465. [PMID: 37728486 PMCID: PMC10541181 DOI: 10.7554/elife.83465] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 09/19/2023] [Indexed: 09/21/2023] Open
Abstract
The amyloid beta (Aβ) plaques found in Alzheimer's disease (AD) patients' brains contain collagens and are embedded extracellularly. Several collagens have been proposed to influence Aβ aggregate formation, yet their role in clearance is unknown. To investigate the potential role of collagens in forming and clearance of extracellular aggregates in vivo, we created a transgenic Caenorhabditis elegans strain that expresses and secretes human Aβ1-42. This secreted Aβ forms aggregates in two distinct places within the extracellular matrix. In a screen for extracellular human Aβ aggregation regulators, we identified different collagens to ameliorate or potentiate Aβ aggregation. We show that a disintegrin and metalloprotease a disintegrin and metalloprotease 2 (ADM-2), an ortholog of ADAM9, reduces the load of extracellular Aβ aggregates. ADM-2 is required and sufficient to remove the extracellular Aβ aggregates. Thus, we provide in vivo evidence of collagens essential for aggregate formation and metalloprotease participating in extracellular Aβ aggregate removal.
Collapse
Affiliation(s)
- Elisabeth Jongsma
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH ZürichSchwerzenbachSwitzerland
| | - Anita Goyala
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH ZürichSchwerzenbachSwitzerland
| | - José Maria Mateos
- Center for Microscopy and Image Analysis, University of ZurichZurichSwitzerland
| | - Collin Yvès Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH ZürichSchwerzenbachSwitzerland
| |
Collapse
|
5
|
Milano M, Cinaglia P, Guzzi PH, Cannataro M. Aligning Cross-Species Interactomes for Studying Complex and Chronic Diseases. Life (Basel) 2023; 13:1520. [PMID: 37511895 PMCID: PMC10381714 DOI: 10.3390/life13071520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Neurodegenerative diseases (NDs) are a group of complex disorders characterized by the progressive degeneration and dysfunction of neurons in the central nervous system. NDs encompass many conditions, including Alzheimer's disease and Parkinson's disease. Alzheimer's disease (AD) is a complex disease affecting almost forty million people worldwide. AD is characterized by a progressive decline of cognitive functions related to the loss of connections between nerve cells caused by the prevalence of extracellular Aβ plaques and intracellular neurofibrillary tangles plaques. Parkinson's disease (PD) is a neurodegenerative disorder that primarily affects the movement of an individual. The exact cause of Parkinson's disease is not fully understood, but it is believed to involve a combination of genetic and environmental factors. Some cases of PD are linked to mutations in the LRRK2, PARKIN and other genes, which are associated with familial forms of the disease. Different research studies have applied the Protein Protein Interaction (PPI) networks to understand different aspects of disease progression. For instance, Caenorhabditis elegans is widely used as a model organism for the study of AD due to roughly 38% of its genes having a human ortholog. This study's goal consists of comparing PPI network of C. elegans and human by applying computational techniques, widely used for the analysis of PPI networks between species, such as Local Network Alignment (LNA). For this aim, we used L-HetNetAligner algorithm to build a local alignment among two PPI networks, i.e., C. elegans and human PPI networks associated with AD and PD built-in silicon. The results show that L-HetNetAligner can find local alignments representing functionally related subregions. In conclusion, since local alignment enables the extraction of functionally related modules, the method can be used to study complex disease progression.
Collapse
Affiliation(s)
- Marianna Milano
- Department of Experimental and Clinical Medicine, University Magna Græcia, 88100 Catanzaro, Italy
- Data Analytics Research Center, University Magna Græcia, 88100 Catanzaro, Italy
| | - Pietro Cinaglia
- Data Analytics Research Center, University Magna Græcia, 88100 Catanzaro, Italy
- Department of Health Sciences, University Magna Græcia, 88100 Catanzaro, Italy
| | - Pietro Hiram Guzzi
- Data Analytics Research Center, University Magna Græcia, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, University Magna Græcia, 88100 Catanzaro, Italy
| | - Mario Cannataro
- Data Analytics Research Center, University Magna Græcia, 88100 Catanzaro, Italy
- Department of Medical and Surgical Sciences, University Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
6
|
Shim YJ, Shin MK, Jung J, Koo B, Jang W. An in-silico approach to studying a very rare neurodegenerative disease using a disease with higher prevalence with shared pathways and genes: Cerebral adrenoleukodystrophy and Alzheimer’s disease. Front Mol Neurosci 2022; 15:996698. [PMID: 36245924 PMCID: PMC9553843 DOI: 10.3389/fnmol.2022.996698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
Cerebral adrenoleukodystrophy (cALD) is a rare neurodegenerative disease characterized by inflammatory demyelination in the central nervous system. Another neurodegenerative disease with a high prevalence, Alzheimer’s disease (AD), shares many common features with cALD such as cognitive impairment and the alleviation of symptoms by erucic acid. We investigated cALD and AD in parallel to study the shared pathological pathways between a rare disease and a more common disease. The approach may expand the biological understandings and reveal novel therapeutic targets. Gene set enrichment analysis (GSEA) and weighted gene correlation network analysis (WGCNA) were conducted to identify both the resemblance in gene expression patterns and genes that are pathologically relevant in the two diseases. Within differentially expressed genes (DEGs), GSEA identified 266 common genes with similar up- or down-regulation patterns in cALD and AD. Among the interconnected genes in AD data, two gene sets containing 1,486 genes preserved in cALD data were selected by WGCNA that may significantly affect the development and progression of cALD. WGCNA results filtered by functional correlation via protein–protein interaction analysis overlapping with GSEA revealed four genes (annexin A5, beta-2-microglobulin, CD44 molecule, and fibroblast growth factor 2) that showed robust associations with the pathogeneses of cALD and AD, where they were highly involved in inflammation, apoptosis, and the mitogen-activated protein kinase pathway. This study provided an integrated strategy to provide new insights into a rare disease with scant publicly available data (cALD) using a more prevalent disorder with some pathological association (AD), which suggests novel druggable targets and drug candidates.
Collapse
Affiliation(s)
- Yu Jeong Shim
- Department of Life Science, Dongguk University, Goyang-si, South Korea
| | - Min Kyoung Shin
- Department of Life Science, Dongguk University, Goyang-si, South Korea
| | - Junghyun Jung
- Department of Life Science, Dongguk University, Goyang-si, South Korea
| | | | - Wonhee Jang
- Department of Life Science, Dongguk University, Goyang-si, South Korea
- *Correspondence: Wonhee Jang,
| |
Collapse
|
7
|
Kang N, Luan Y, Jiang Y, Cheng W, Liu Y, Su Z, Liu Y, Tan P. Neuroprotective Effects of Oligosaccharides in Rehmanniae Radix on Transgenic Caenorhabditis elegans Models for Alzheimer’s Disease. Front Pharmacol 2022; 13:878631. [PMID: 35784741 PMCID: PMC9247152 DOI: 10.3389/fphar.2022.878631] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/02/2022] [Indexed: 12/02/2022] Open
Abstract
Rehmanniae Radix (RR, the dried tuberous roots of Rehmannia glutinosa (Gaertn.) DC.) is an important traditional Chinese medicine distributed in Henan, Hebei, Inner Mongolia, and Northeast in China. RR is frequently used to treat diabetes mellitus, cardiovascular disease, osteoporosis and aging-related diseases in a class of prescriptions. The oligosaccharides and catalpol in RR have been confirmed to have neuroprotective effects. However, there are few studies on the anti-Alzheimer’s disease (AD) effect of oligosaccharides in Rehmanniae Radix (ORR). The chemical components and pharmacological effects of dried Rehmannia Radix (DRR) and prepared Rehmannia Radix (PRR) are different because of the different processing methods. ORR has neuroprotective potential, such as improving learning and memory in rats. Therefore, this study aimed to prove the importance of oligosaccharides in DRR (ODRR) and PRR (OPRR) for AD based on the Caenorhabditis elegans (C. elegans) model and the different roles of ODRR and OPRR in the treatment of AD. In this study, we used paralysis assays, lifespan and stress resistance assays, bacterial growth curve, developmental and behavioral parameters, and ability of learning and memory to explore the effects of ODRR and OPRR on anti-AD and anti-aging. Furthermore, the accumulation of reactive oxygen species (ROS); deposition of Aβ; and expression of amy-1, sir-2.1, daf-16, sod-3, skn-1, and hsp-16.2 were analyzed to confirm the efficacy of ODRR and OPRR. OPRR was more effective than ODRR in delaying the paralysis, improving learning ability, and prolonging the lifespan of C. elegans. Further mechanism studies showed that the accumulation of ROS, aggregation, and toxicity of Aβ were reduced, suggesting that ORR alleviated Aβ-induced toxicity, in part, through antioxidant activity and Aβ aggregation inhibiting. The expression of amy-1 was downregulated, and sir-2.1, daf-16, sod-3, and hsp-16.2 were upregulated. Thus, ORR could have a possible therapeutic effect on AD by modulating the expression of amy-1, sir-2.1, daf-16, sod-3, and hsp-16.2. Furthermore, ORR promoted the nuclear localization of daf-16 and further increased the expression of sod-3 and hsp-16.2, which significantly contributed to inhibiting the Aβ toxicity and enhancing oxidative stress resistance. In summary, the study provided a new idea for the development of ORR.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Tan
- *Correspondence: Yonggang Liu, ; Peng Tan,
| |
Collapse
|
8
|
Mora I, Arola L, Caimari A, Escoté X, Puiggròs F. Structured Long-Chain Omega-3 Fatty Acids for Improvement of Cognitive Function during Aging. Int J Mol Sci 2022; 23:3472. [PMID: 35408832 PMCID: PMC8998232 DOI: 10.3390/ijms23073472] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
Although the human lifespan has increased in the past century owing to advances in medicine and lifestyle, the human healthspan has not kept up the same pace, especially in brain aging. Consequently, the role of preventive health interventions has become a crucial strategy, in particular, the identification of nutritional compounds that could alleviate the deleterious effects of aging. Among nutrients to cope with aging in special cognitive decline, the long-chain omega-3 polyunsaturated fatty acids (ω-3 LCPUFAs) docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), have emerged as very promising ones. Due to their neuroinflammatory resolving effects, an increased status of DHA and EPA in the elderly has been linked to better cognitive function and a lower risk of dementia. However, the results from clinical studies do not show consistent evidence and intake recommendations for old adults are lacking. Recently, supplementation with structured forms of EPA and DHA, which can be derived natural forms or targeted structures, have proven enhanced bioavailability and powerful benefits. This review summarizes present and future perspectives of new structures of ω-3 LCPUFAs and the role of "omic" technologies combined with the use of high-throughput in vivo models to shed light on the relationships and underlying mechanisms between ω-3 LCPUFAs and healthy aging.
Collapse
Affiliation(s)
- Ignasi Mora
- Brudy Technology S.L., 08006 Barcelona, Spain
| | - Lluís Arola
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Antoni Caimari
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| | - Xavier Escoté
- Eurecat, Centre Tecnològic de Catalunya, Nutrition and Health Unit, 43204 Reus, Spain
| | - Francesc Puiggròs
- Eurecat, Centre Tecnològic de Catalunya, Biotechnology Area, 43204 Reus, Spain
| |
Collapse
|
9
|
Modeling Alzheimer's Disease in Caenorhabditis elegans. Biomedicines 2022; 10:biomedicines10020288. [PMID: 35203497 PMCID: PMC8869312 DOI: 10.3390/biomedicines10020288] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is the most frequent cause of dementia. After decades of research, we know the importance of the accumulation of protein aggregates such as β-amyloid peptide and phosphorylated tau. We also know that mutations in certain proteins generate early-onset Alzheimer’s disease (EOAD), and many other genes modulate the disease in its sporadic form. However, the precise molecular mechanisms underlying AD pathology are still unclear. Because of ethical limitations, we need to use animal models to investigate these processes. The nematode Caenorhabditis elegans has received considerable attention in the last 25 years, since the first AD models overexpressing Aβ peptide were described. We review here the main results obtained using this model to study AD. We include works studying the basic molecular mechanisms of the disease, as well as those searching for new therapeutic targets. Although this model also has important limitations, the ability of this nematode to generate knock-out or overexpression models of any gene, single or combined, and to carry out toxicity, recovery or survival studies in short timeframes with many individuals and at low cost is difficult to overcome. We can predict that its use as a model for various diseases will certainly continue to increase.
Collapse
|
10
|
Baltoumas FA, Zafeiropoulou S, Karatzas E, Koutrouli M, Thanati F, Voutsadaki K, Gkonta M, Hotova J, Kasionis I, Hatzis P, Pavlopoulos GA. Biomolecule and Bioentity Interaction Databases in Systems Biology: A Comprehensive Review. Biomolecules 2021; 11:1245. [PMID: 34439912 PMCID: PMC8391349 DOI: 10.3390/biom11081245] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 02/06/2023] Open
Abstract
Technological advances in high-throughput techniques have resulted in tremendous growth of complex biological datasets providing evidence regarding various biomolecular interactions. To cope with this data flood, computational approaches, web services, and databases have been implemented to deal with issues such as data integration, visualization, exploration, organization, scalability, and complexity. Nevertheless, as the number of such sets increases, it is becoming more and more difficult for an end user to know what the scope and focus of each repository is and how redundant the information between them is. Several repositories have a more general scope, while others focus on specialized aspects, such as specific organisms or biological systems. Unfortunately, many of these databases are self-contained or poorly documented and maintained. For a clearer view, in this article we provide a comprehensive categorization, comparison and evaluation of such repositories for different bioentity interaction types. We discuss most of the publicly available services based on their content, sources of information, data representation methods, user-friendliness, scope and interconnectivity, and we comment on their strengths and weaknesses. We aim for this review to reach a broad readership varying from biomedical beginners to experts and serve as a reference article in the field of Network Biology.
Collapse
Affiliation(s)
- Fotis A. Baltoumas
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Sofia Zafeiropoulou
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Evangelos Karatzas
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Mikaela Koutrouli
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Foteini Thanati
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Kleanthi Voutsadaki
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Maria Gkonta
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Joana Hotova
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Ioannis Kasionis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
| | - Pantelis Hatzis
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgios A. Pavlopoulos
- Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; (S.Z.); (E.K.); (M.K.); (F.T.); (K.V.); (M.G.); (J.H.); (I.K.); (P.H.)
- Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|