1
|
Rashidi N, Harasymowicz NS, Savadipour A, Steward N, Tang R, Oswald S, Guilak F. PIEZO1-mediated mechanotransduction regulates collagen synthesis on nanostructured 2D and 3D models of fibrosis. Acta Biomater 2025; 193:242-254. [PMID: 39675497 DOI: 10.1016/j.actbio.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
Progressive fibrosis can lead to tissue malfunction and organ failure due to the pathologic accumulation of a collagen-rich extracellular matrix. In vitro models provide useful tools for deconstructing the roles of specific biomechanical or biological mechanisms, such as substrate micro- and nanoscale architecture, in these processes for identifying potential therapeutic targets. Here, we investigated how the mechanosensitive ion channel PIEZO1 influences fibrotic gene and protein expression in adipose-derived stem cells (hASCs). Specifically, we examined the role of PIEZO1 and the mechanosensitive transcription factors YAP/TAZ in sensing aligned or non-aligned substrate architecture to regulate collagen formation. We utilized both 2D microphotopatterned substrates and 3D electrospun polycaprolactone (PCL) substrates to study the role of culture dimensionality. We found that PIEZO1 regulates collagen synthesis in hASCs in a manner that is sensitive to substrate architecture. Activation of PIEZO1 induced significant morphological changes in hASCs, particularly when cultured on aligned substrates, leading to a 30-40 % reduction in cell spreading area and increased cell elongation, in 3D-aligned cultures. Picrosirius Red staining and immunoblotting revealed that PIEZO1 activation reduced collagen accumulation in 3D culture. While YAP translocated to the cytoplasm following PIEZO1 activation, depleting YAP and TAZ did not change collagen expression significantly downstream of PIEZO1 activation, implying that YAP/TAZ translocation from the nucleus and decreased collagen synthesis may be independent consequences of PIEZO1 activation. Our studies demonstrate a role for PIEZO1 in cellular mechanosensing of substrate architecture and provide targetable pathways for treating fibrosis and for enhancing tissue-engineered and regenerative approaches for fibrous tissue repair. STATEMENT OF SIGNIFICANCE: This study examines how cells sense and respond to their physical environment via PIEZO1 mechanotransduction. We discovered that cells use PIEZO1 to detect the alignment of surrounding structures, influencing the production of collagen - a key component in fibrosis. Our study used both 2D and 3D models to mimic different tissue environments, providing new insights into how cellular responses change in more complex settings. Importantly, we found that activating PIEZO1 alters cell shape and collagen production, especially on aligned surfaces. Interestingly, while PIEZO1 activation caused YAP translocation to the cytoplasm, this translocation did not directly affect collagen production. This work advances our understanding of fibrosis development and identifies PIEZO1 as a potential target for new therapies.
Collapse
Affiliation(s)
- Neda Rashidi
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Natalia S Harasymowicz
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Alireza Savadipour
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA
| | - Nancy Steward
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ruhang Tang
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sara Oswald
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Shriners Hospitals for Children, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Mechanical Engineering, Washington University, St. Louis, MO 63130, USA; Cytex Therapeutics, Inc., Durham, NC 27704, USA.
| |
Collapse
|
2
|
Ni K, Che B, Gu R, Wang C, Pan Y, Li J, Liu L, Luo M, Deng L. Single-Cell Hypertrophy Promotes Contractile Function of Cultured Human Airway Smooth Muscle Cells via Piezo1 and YAP Auto-Regulation. Cells 2024; 13:1697. [PMID: 39451215 PMCID: PMC11505810 DOI: 10.3390/cells13201697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/30/2024] [Accepted: 10/12/2024] [Indexed: 10/26/2024] Open
Abstract
Severe asthma is characterized by increased cell volume (hypertrophy) and enhanced contractile function (hyperresponsiveness) of the airway smooth muscle cells (ASMCs). The causative relationship and underlying regulatory mechanisms between them, however, have remained unclear. Here, we manipulated the single-cell volume of in vitro cultured human ASMCs to increase from 2.7 to 5.2 and 8.2 × 103 μm3 as a simulated ASMC hypertrophy by culturing the cells on micropatterned rectangular substrates with a width of 25 μm and length from 50 to 100 and 200 μm, respectively. We found that as the cell volume increased, ASMCs exhibited a pro-contractile function with increased mRNA expression of contractile proteins, increased cell stiffness and traction force, and enhanced response to contractile stimulation. We also uncovered a concomitant increase in membrane tension and Piezo1 mRNA expression with increasing cell volume. Perhaps more importantly, we found that the enhanced contractile function due to cell volume increase was largely attenuated when membrane tension and Piezo1 mRNA expression were downregulated, and an auto-regulatory loop between Piezo1 and YAP mRNA expression was also involved in perpetuating the contractile function. These findings, thus, provide convincing evidence of a direct link between hypertrophy and enhanced contractile function of ASMCs that was mediated via Piezo1 mRNA expression, which may be specifically targeted as a novel therapeutic strategy to treat pulmonary diseases associated with ASMC hypertrophy such as severe asthma.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Mingzhi Luo
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| | - Linhong Deng
- Changzhou Key Laboratory of Respiratory Medical Engineering, Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
3
|
Li MJ, Li CX, Li JY, Gong ZC, Shao B, Zhou YC, Xu YJ, Jia MY. Biomechanism of abnormal stress on promoting osteoarthritis of temporomandibular joint through Piezo1 ion channel. J Oral Rehabil 2024; 51:1935-1946. [PMID: 38873703 DOI: 10.1111/joor.13777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 06/15/2024]
Abstract
OBJECTIVE This study aimed to investigate whether flow fluid shear stress (FFSS)-mediated signal transduction affects the function of Piezo1 ion channel in chondrocyte and to further explore the role of mechanical overloading in development of temporomandibular joint osteoarthritis (TMJ OA). METHODS Immunohistochemical staining was used to determine the expression of Piezo1 in TMJ OA tissue collected from rat unilateral anterior crossbite (UAC) models. Chondrocytes harvested from normal adult SD rats were treated with FFSS (0, 4, 8, 12 dyn/cm2) in vitro. Immunofluorescent staining, real-time polymerase chain reaction, western blotting, flow cytometry and phalloidin assay were performed to detect the changes of cellular morphology as well as the expression of Piezo1 and certain pro-inflammatory and degradative factors in chondrocyte. RESULTS Immunohistochemical analysis revealed that significantly increased Piezo1 expression was associated with UAC stimulation (p < .05). As applied FFSS escalated (4, 8 and 12 dyn/cm2), the expression levels of Piezo1, ADAMTS-5, MMP-13 and Col-X gradually increased, compared with the non-FFSS group (p < .05). Administering Piezo1 ion channel inhibitor to chondrocytes beforehand, it was observed that expression of ADAMTS-5, MMP-13 and Col-X was substantially decreased following FFSS treatment (p < .05) and the effect of cytoskeletal thinning was counteracted. The activated Piezo1 ion channel enhanced intracellular Ca2+ excess in chondrocytes during abnormal mechanical stimulation and the increased intracellular Ca2+ thinned the cytoskeleton of F-actin. CONCLUSIONS Mechanical overloading activates Piezo1 ion channel to promote pro-inflammation and degradation and to increase Ca2+ concentration in chondrocyte, which may eventually result in TMJ OA.
Collapse
Affiliation(s)
- Meng-Jia Li
- Department of Oral and Maxillofacial Oncology and Surgery, School/Hospital of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen-Xi Li
- Department of Oral and Maxillofacial Oncology and Surgery, School/Hospital of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, School of Stomatology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Yu Li
- Department of Oral and Maxillofacial Oncology and Surgery, School/Hospital of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhong-Cheng Gong
- Department of Oral and Maxillofacial Oncology and Surgery, School/Hospital of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Bo Shao
- Department of Oral and Maxillofacial Oncology and Surgery, School/Hospital of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Yu-Chuan Zhou
- Department of Oral and Maxillofacial Oncology and Surgery, School/Hospital of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Ying-Jie Xu
- Department of Oral and Maxillofacial Oncology and Surgery, School/Hospital of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Meng-Ying Jia
- Department of Oral and Maxillofacial Oncology and Surgery, School/Hospital of Stomatology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Stomatological Research Institute of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
4
|
Michelucci A, Catacuzzeno L. Piezo1, the new actor in cell volume regulation. Pflugers Arch 2024; 476:1023-1039. [PMID: 38581527 PMCID: PMC11166825 DOI: 10.1007/s00424-024-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
All animal cells control their volume through a complex set of mechanisms, both to counteract osmotic perturbations of the environment and to enable numerous vital biological processes, such as proliferation, apoptosis, and migration. The ability of cells to adjust their volume depends on the activity of ion channels and transporters which, by moving K+, Na+, and Cl- ions across the plasma membrane, generate the osmotic gradient that drives water in and out of the cell. In 2010, Patapoutian's group identified a small family of evolutionarily conserved, Ca2+-permeable mechanosensitive channels, Piezo1 and Piezo2, as essential components of the mechanically activated current that mediates mechanotransduction in vertebrates. Piezo1 is expressed in several tissues and its opening is promoted by a wide range of mechanical stimuli, including membrane stretch/deformation and osmotic stress. Piezo1-mediated Ca2+ influx is used by the cell to convert mechanical forces into cytosolic Ca2+ signals that control diverse cellular functions such as migration and cell death, both dependent on changes in cell volume and shape. The crucial role of Piezo1 in the regulation of cell volume was first demonstrated in erythrocytes, which need to reduce their volume to pass through narrow capillaries. In HEK293 cells, increased expression of Piezo1 was found to enhance the regulatory volume decrease (RVD), the process whereby the cell re-establishes its original volume after osmotic shock-induced swelling, and it does so through Ca2+-dependent modulation of the volume-regulated anion channels. More recently we reported that Piezo1 controls the RVD in glioblastoma cells via the modulation of Ca2+-activated K+ channels. To date, however, the mechanisms through which this mechanosensitive channel controls cell volume and maintains its homeostasis have been poorly investigated and are still far from being understood. The present review aims to provide a broad overview of the literature discussing the recent advances on this topic.
Collapse
Affiliation(s)
- A Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - L Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| |
Collapse
|
5
|
So CL, Robitaille M, Sadras F, McCullough MH, Milevskiy MJG, Goodhill GJ, Roberts-Thomson SJ, Monteith GR. Cellular geometry and epithelial-mesenchymal plasticity intersect with PIEZO1 in breast cancer cells. Commun Biol 2024; 7:467. [PMID: 38632473 PMCID: PMC11024093 DOI: 10.1038/s42003-024-06163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Differences in shape can be a distinguishing feature between different cell types, but the shape of a cell can also be dynamic. Changes in cell shape are critical when cancer cells escape from the primary tumor and undergo major morphological changes that allow them to squeeze between endothelial cells, enter the vasculature, and metastasize to other areas of the body. A shift from rounded to spindly cellular geometry is a consequence of epithelial-mesenchymal plasticity, which is also associated with changes in gene expression, increased invasiveness, and therapeutic resistance. However, the consequences and functional impacts of cell shape changes and the mechanisms through which they occur are still poorly understood. Here, we demonstrate that altering the morphology of a cell produces a remodeling of calcium influx via the ion channel PIEZO1 and identify PIEZO1 as an inducer of features of epithelial-to-mesenchymal plasticity. Combining automated epifluorescence microscopy and a genetically encoded calcium indicator, we demonstrate that activation of the PIEZO1 force channel with the PIEZO1 agonist, YODA 1, induces features of epithelial-to-mesenchymal plasticity in breast cancer cells. These findings suggest that PIEZO1 is a critical point of convergence between shape-induced changes in cellular signaling and epithelial-mesenchymal plasticity in breast cancer cells.
Collapse
Affiliation(s)
- Choon Leng So
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Mélanie Robitaille
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Francisco Sadras
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia
| | - Michael H McCullough
- Queensland Brain Institute and School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
- Eccles Institute of Neuroscience, John Curtin School of Medical Research, and School of Computing, ANU College of Engineering and Computer Science, The Australian National University, Canberra, ACT, 2600, Australia
| | - Michael J G Milevskiy
- ACRF Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 2010, Australia
| | - Geoffrey J Goodhill
- Queensland Brain Institute and School of Mathematics and Physics, The University of Queensland, Brisbane, QLD, 4072, Australia
- Departments of Developmental Biology and Neuroscience, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
6
|
Horta CA, Doan K, Yang J. Mechanotransduction pathways in regulating epithelial-mesenchymal plasticity. Curr Opin Cell Biol 2023; 85:102245. [PMID: 37804773 PMCID: PMC10796216 DOI: 10.1016/j.ceb.2023.102245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/16/2023] [Accepted: 09/03/2023] [Indexed: 10/09/2023]
Abstract
The extracellular matrix (ECM) provides structural support for cells and mediates cell-stromal communications. In addition to ECM proteins, mechanical force exerted from the ECM serves as a critical regulator of many biological processes. Epithelial-mesenchymal transition (EMT) is a cellular process by which epithelial cells loosen their cellular junctions and migrate and invade in a more mesenchymal fashion. Recent studies show that increasing ECM stiffness can impinge on cellular signaling pathways through mechanotransduction to promote carcinoma cells to undergo EMT, suggesting that mechanical force exerted by the ECM plays a critical role in tumor invasion and metastasis. Here, we highlight recent work utilizing innovative approaches to study mechanotransduction and summarize newly discovered mechanisms by which mechanosensors and responders regulate EMT during tumor progression and metastasis.
Collapse
Affiliation(s)
- Calista A Horta
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Khoa Doan
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| |
Collapse
|
7
|
Zhu H, He W, Ye P, Chen J, Wu X, Mu X, Wu Y, Pang H, Han F, Nie X. Piezo1 in skin wound healing and related diseases: Mechanotransduction and therapeutic implications. Int Immunopharmacol 2023; 123:110779. [PMID: 37582313 DOI: 10.1016/j.intimp.2023.110779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/17/2023]
Abstract
Skin wound healing is a multifaceted and intricate process involving inflammation, tissue proliferation, and scar formation, all of which are accompanied by the continuous application of mechanical forces. Mechanotransduction is the mechanism by which the skin receives and reacts to physical signals from the internal and external environment, converting them into intracellular biochemical signals. This intricate process relies on specialized proteins known as mechanotransducers, with Piezo1 being a critical mechanosensitive ion channel that plays a central role in this process. This article provides an overview of the structural characteristics of Piezo1 and summarizes its effects on corresponding cells or tissues at different stages of skin trauma, including how it regulates skin sensation and skin-related diseases. The aim is to reveal the potential diagnostic and therapeutic value of Piezo1 in skin trauma and skin-related diseases. Piezo1 has been reported to be a vital mediator of mechanosensation and transduction in various organs and tissues. Given its high expression in the skin, Piezo1, as a significant cell membrane ion channel, is essential in activating intracellular signaling cascades that trigger several cellular physiological functions, including cell migration and muscle contraction. These functions contribute to the regulation and improvement of wound healing.
Collapse
Affiliation(s)
- Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Wenjie He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xingqian Wu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Xingrui Mu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China.
| | - Youzhi Wu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; School Medical Office, Zunyi Medical University, Zunyi 563006, China; Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland (UQ), Brisbane, QLD 4072, Australia; School of Biomedical Sciences, Translational Research Institute (TRI), Queensland University of Technology (QUT), Brisbane, QLD 4102, Australia.
| |
Collapse
|
8
|
Grandy C, Port F, Radzinski M, Singh K, Erz D, Pfeil J, Reichmann D, Gottschalk KE. Remodeling of the focal adhesion complex by hydrogen-peroxide-induced senescence. Sci Rep 2023; 13:9735. [PMID: 37322076 PMCID: PMC10272183 DOI: 10.1038/s41598-023-36347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Cellular senescence is a phenotype characterized by cessation of cell division, which can be caused by exhaustive replication or environmental stress. It is involved in age-related pathophysiological conditions and affects both the cellular cytoskeleton and the prime cellular mechanosensors, focal adhesion complexes. While the size of focal adhesions increases during senescence, it is unknown if and how this is accompanied by a remodeling of the internal focal adhesion structure. Our study uses metal-induced energy transfer to study the axial dimension of focal adhesion proteins from oxidative-stress-induced senescent cells with nanometer precision, and compares these to unstressed cells. We influenced cytoskeletal tension and the functioning of mechanosensitive ion channels using drugs and studied the combined effect of senescence and drug intervention on the focal adhesion structure. We found that H2O2-induced restructuring of the focal adhesion complex indicates a loss of tension and altered talin complexation. Mass spectroscopy-based proteomics confirmed the differential regulation of several cytoskeletal proteins induced by H2O2 treatment.
Collapse
Affiliation(s)
- Carolin Grandy
- Institute of Experimental Physics, Ulm University, 89081, Ulm, Baden-Württemberg, Germany
| | - Fabian Port
- Institute of Experimental Physics, Ulm University, 89081, Ulm, Baden-Württemberg, Germany
| | - Meytal Radzinski
- Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, 9190401, Jerusalem, Israel
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, 89081, Ulm,, Baden-Württemberg, Germany
| | - Dorothee Erz
- Institute of Experimental Physics, Ulm University, 89081, Ulm, Baden-Württemberg, Germany
| | - Jonas Pfeil
- Institute of Experimental Physics, Ulm University, 89081, Ulm, Baden-Württemberg, Germany
| | - Dana Reichmann
- Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, 9190401, Jerusalem, Israel
| | | |
Collapse
|
9
|
Jetta D, Shireen T, Hua SZ. Epithelial cells sense local stiffness via Piezo1 mediated cytoskeletal reorganization. Front Cell Dev Biol 2023; 11:1198109. [PMID: 37293127 PMCID: PMC10244755 DOI: 10.3389/fcell.2023.1198109] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/10/2023] [Indexed: 06/10/2023] Open
Abstract
Local substrate stiffness is one of the major mechanical inputs for tissue organization during its development and remodeling. It is widely recognized that adherent cells use transmembrane proteins (integrins) at focal adhesions to translate ECM mechanical cues into intracellular bioprocess. Here we show that epithelial cells respond to substrate stiffening primarily via actin cytoskeleton organization, that requires activation of mechanosensitive Piezo1 channels. Piezo1 Knockdown cells eliminated the actin stress fibers that formed on stiff substrates, while it had minimal effect on cell morphology and spreading area. Inhibition of Piezo1 channels with GsMTx4 also significantly reduced stiffness-induced F-actin reorganization, suggesting Piezo1 mediated cation current plays a role. Activation of Piezo1 channels with specific agonist (Yoda1) resulted in thickening of F-actin fibers and enlargement of FAs on stiffer substrates, whereas it did not affect the formation of nascent FAs that facilitate spreading on the soft substrates. These results demonstrate that Piezo1 functions as a force sensor that couples with actin cytoskeleton to distinguish the substrate stiffness and facilitate epithelial adaptive remodeling.
Collapse
Affiliation(s)
- Deekshitha Jetta
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, United States
| | - Tasnim Shireen
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, United States
| | - Susan Z. Hua
- Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY, United States
- Department of Physiology and Biophysics, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
10
|
Kim YJ, Hyun J. Mechanosensitive ion channels in apoptosis and ferroptosis: focusing on the role of Piezo1. BMB Rep 2023; 56:145-152. [PMID: 36724905 PMCID: PMC10068349 DOI: 10.5483/bmbrep.2023-0002] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 08/27/2023] Open
Abstract
Mechanosensitive ion channels sense mechanical stimuli applied directly to the cellular membranes or indirectly through their tethered components, provoking cellular mechanoresponses. Among others, Piezo1 mechanosensitive ion channel is a relatively novel Ca2+-permeable channel that is primarily present in non-sensory tissues. Recent studies have demonstrated that Piezo1 plays an important role in Ca2+-dependent cell death, including apoptosis and ferroptosis, in the presence of mechanical stimuli. It has also been proven that cancer cells are sensitive to mechanical stresses due to higher expression levels of Piezo1 compared to normal cells. In this review, we discuss Piezo1-mediated cell death mechanisms and therapeutic strategies to inhibit or induce cell death by modulating the activity of Piezo1 with pharmacological drugs or mechanical perturbations induced by stretch and ultrasound. [BMB Reports 2023; 56(3): 145-152].
Collapse
Affiliation(s)
- Yong-Jae Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
| | - Jeongeun Hyun
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Korea
- Mechanobiology Dental Medicine Research Center, College of Dentistry, Dankook University, Cheonan 31116, Korea
| |
Collapse
|
11
|
Forzisi E, Sesti F. Non-conducting functions of ion channels: The case of integrin-ion channel complexes. Channels (Austin) 2022; 16:185-197. [PMID: 35942524 PMCID: PMC9364710 DOI: 10.1080/19336950.2022.2108565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Started as an academic curiosity more than two decades ago, the idea that ion channels can regulate cellular processes in ways that do not depend on their conducting properties (non-ionic functions) gained traction and is now a flourishing area of research. Channels can regulate physiological processes including actin cytoskeletal remodeling, cell motility, excitation-contraction coupling, non-associative learning and embryogenesis, just to mention some, through non-ionic functions. When defective, non-ionic functions can give rise to channelopathies involved in cancer, neurodegenerative disease and brain trauma. Ion channels exert their non-ionic functions through a variety of mechanisms that range from physical coupling with other proteins, to possessing enzymatic activity, to assembling with signaling molecules. In this article, we take stock of the field and review recent findings. The concept that emerges, is that one of the most common ways through which channels acquire non-ionic attributes, is by assembling with integrins. These integrin-channel complexes exhibit broad genotypic and phenotypic heterogeneity and reveal a pleiotropic nature, as they appear to be capable of influencing both physiological and pathological processes.
Collapse
Affiliation(s)
- Elena Forzisi
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, NJ, USA
| |
Collapse
|
12
|
Canales Coutiño B, Mayor R. Neural crest mechanosensors: Seeing old proteins in a new light. Dev Cell 2022; 57:1792-1801. [PMID: 35901790 DOI: 10.1016/j.devcel.2022.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022]
Abstract
Mechanical forces exerted on neural crest cells control their collective migration and differentiation. This perspective discusses our current understanding of neural crest mechanotransduction during cell migration and differentiation. Additionally, we describe proteins that have mechanosensitive functions in other systems, such as mechanosensitive G-protein-coupled receptors, mechanosensitive ion channels, cell-cell adhesion, and cell-matrix-interacting proteins, and highlight that these same proteins have in the past been studied in neural crest development from a purely signaling point of view. We propose that future studies elucidate the mechanosensitive functions these receptors may play in neural crest development and integrate this with their known molecular role.
Collapse
Affiliation(s)
- Brenda Canales Coutiño
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
13
|
Taiyab A, West-Mays J. Lens Fibrosis: Understanding the Dynamics of Cell Adhesion Signaling in Lens Epithelial-Mesenchymal Transition. Front Cell Dev Biol 2022; 10:886053. [PMID: 35656546 PMCID: PMC9152183 DOI: 10.3389/fcell.2022.886053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022] Open
Abstract
Injury to the ocular lens perturbs cell-cell and cell-capsule/basement membrane interactions leading to a myriad of interconnected signaling events. These events include cell-adhesion and growth factor-mediated signaling pathways that can ultimately result in the induction and progression of epithelial-mesenchymal transition (EMT) of lens epithelial cells and fibrosis. Since the lens is avascular, consisting of a single layer of epithelial cells on its anterior surface and encased in a matrix rich capsule, it is one of the most simple and desired systems to investigate injury-induced signaling pathways that contribute to EMT and fibrosis. In this review, we will discuss the role of key cell-adhesion and mechanotransduction related signaling pathways that regulate EMT and fibrosis in the lens.
Collapse
|
14
|
Foote AG, Lungova V, Thibeault SL. Piezo1-expressing vocal fold epithelia modulate remodeling via effects on self-renewal and cytokeratin differentiation. Cell Mol Life Sci 2022; 79:591. [PMID: 36376494 PMCID: PMC9663367 DOI: 10.1007/s00018-022-04622-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022]
Abstract
Mechanoreceptors are implicated as functional afferents within mucosa of the airways and the recent discovery of mechanosensitive channels Piezo1 and Piezo2 has proved essential for cells of various mechanically sensitive tissues. However, the role for Piezo1/2 in vocal fold (VF) mucosal epithelia, a cell that withstands excessive biomechanical insult, remains unknown. The purpose of this study was to test the hypothesis that Piezo1 is required for VF mucosal repair pathways of epithelial cell injury. Utilizing a sonic hedgehog (shh) Cre line for epithelial-specific ablation of Piezo1/2 mechanoreceptors, we investigated 6wk adult VF mucosa following naphthalene exposure for repair strategies at 1, 3, 7 and 14 days post-injury (dpi). PIEZO1 localized to differentiated apical epithelia and was paramount for epithelial remodeling events. Injury to wildtype epithelium was most appreciated at 3 dpi. Shhcre/+; Piezo1loxP/loxP, Piezo2 loxP/+ mutant epithelium exhibited severe cell/nuclear defects compared to injured controls. Conditional ablation of Piezo1 and/or Piezo2 to uninjured VF epithelium did not result in abnormal phenotypes across P0, P15 and 6wk postnatal stages compared to heterozygote and control tissue. Results demonstrate a role for Piezo1-expressing VF epithelia in regulating self-renewal via effects on p63 transcription and YAP subcellular translocation-altering cytokeratin differentiation.
Collapse
Affiliation(s)
- Alexander G. Foote
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| | - Vlasta Lungova
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| | - Susan L. Thibeault
- Division of Otolaryngology-Head and Neck Surgery, Department of Surgery, University of Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
15
|
Bosutti A, Giniatullin A, Odnoshivkina Y, Giudice L, Malm T, Sciancalepore M, Giniatullin R, D'Andrea P, Lorenzon P, Bernareggi A. "Time window" effect of Yoda1-evoked Piezo1 channel activity during mouse skeletal muscle differentiation. Acta Physiol (Oxf) 2021; 233:e13702. [PMID: 34097801 PMCID: PMC9286833 DOI: 10.1111/apha.13702] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
Aim Mechanosensitive Piezo1 ion channels emerged recently as important contributors to various vital functions including modulation of the blood supply to skeletal muscles. The specific Piezo1 channel agonist Yoda1 was shown to regulate the tone of blood vessels similarly to physical exercise. However, the direct role of Piezo1 channels in muscle function has been little studied so far. We therefore investigated the action of Yoda1 on the functional state of skeletal muscle precursors (satellite cells and myotubes) and on adult muscle fibres. Methods Immunostaining, electrophysiological intracellular recordings and Ca2+ imaging experiments were performed to localize and assess the effect of the chemical activation of Piezo1 channels with Yoda1, on myogenic precursors, adult myofibres and at the adult neuromuscular junction. Results Piezo1 channels were detected by immunostaining in satellite cells (SCs) and myotubes as well as in adult myofibres. In the skeletal muscle precursors, Yoda1 treatment stimulated the differentiation and cell fusion rather than the proliferation of SCs. Moreover, in myotubes, Yoda1 induced significant [Ca2+]i transients, without detectable [Ca2+]i response in adult myofibres. Furthermore, although expression of Piezo1 channels was detected around the muscle endplate region, Yoda1 application did not alter either the nerve‐evoked or spontaneous synaptic activity or muscle contractions in adult myofibres. Conclusion Our data indicate that the chemical activation of Piezo1 channels specifically enhances the differentiation of skeletal muscle precursors, suggesting a possible new strategy to promote muscle regeneration.
Collapse
Affiliation(s)
| | - Arthur Giniatullin
- Department of Physiology Kazan State Medical University Kazan Russia
- Laboratory of Biophysics of Synaptic Processes Kazan Institute of Biochemistry and BiophysicsFederal Research Center “Kazan Scientific Center of RAS” Kazan Russia
| | | | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
| | - Marina Sciancalepore
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences University of Eastern Finland Kuopio Finland
- Institute of Fundamental Medicine and Biology Federal University Kazan Russia
| | - Paola D'Andrea
- Department of Life Sciences University of Trieste Trieste Italy
| | - Paola Lorenzon
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| | - Annalisa Bernareggi
- Department of Life Sciences University of Trieste Trieste Italy
- B.R.A.I.N., University of Trieste Centre for Neuroscience Trieste Italy
| |
Collapse
|