1
|
Wang H, Li J, Yu K, Lu Y, Ma M, Li Y. The cellular localization and oncogenic or tumor suppressive effects of angiomiotin-like protein 2 in tumor and normal cells. IUBMB Life 2024; 76:764-779. [PMID: 38717123 DOI: 10.1002/iub.2830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/10/2024] [Indexed: 10/19/2024]
Abstract
Angiomiotin (AMOT) family comprises three members: AMOT, AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). AMOTL2 is widely expressed in endothelial cells, epithelial cells, and various cancer cells. Specifically, AMOTL2 predominantly localizes in the cytoplasm and nucleus in human normal cells, whereas associates with cell-cell junctions and actin cytoskeleton in non-human cells, and locates at cell junctions or within the recycling endosomes in cancer cells. AMOTL2 is implicated in regulation of tube formation, cell polarity, and shape, although the specific impact on tumorigenesis remains to be conclusively determined. It has been shown that AMOTL2 enhances tumor growth and metastasis in pancreatic, breast, and colon cancer, however inhibits cell proliferation and migration in lung, hepatocellular cancer, and glioblastoma. In addition to its role in cell shape and cytoskeletal dynamics through co-localization with F-actin, AMOTL2 modulates the transcription of Yes-associated protein (YAP) by binding to it, thereby affecting its phosphorylation and cellular sequestration. Furthermore, the stability and cellular localization of AMOTL2, influenced by its phosphorylation and ubiquitination mediated by specific proteins, affects its cellular function. Additionally, we observe that AMOTL2 is predominantly downregulated in some tumors, but significantly elevated in colorectal adenocarcinoma (COAD). Moreover, overall analysis, GSEA and ROC curve analysis indicate that AMOTL2 exerts as an oncogenic protein in COAD by modulating Wnt pathway, participating in synthesis of collagen formation, and interacting with extracellular matrix receptor. In addition, AMOTL2 potentially regulates the distribution of immune cells infiltration in COAD. In summary, AMOTL2 probably functions as an oncogene in COAD. Consequently, further in-depth mechanistic research is required to elucidate the precise roles of AMOTL2 in various cancers.
Collapse
Affiliation(s)
- Huizhen Wang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jing Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Kexun Yu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yida Lu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Mengdi Ma
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yongxiang Li
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
2
|
Wang Y, Yu FX. Angiomotin family proteins in the Hippo signaling pathway. Bioessays 2024; 46:e2400076. [PMID: 38760875 DOI: 10.1002/bies.202400076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
The Motin family proteins (Motins) are a class of scaffolding proteins consisting of Angiomotin (AMOT), AMOT-like protein 1 (AMOTL1), and AMOT-like protein 2 (AMOTL2). Motins play a pivotal role in angiogenesis, tumorigenesis, and neurogenesis by modulating multiple cellular signaling pathways. Recent findings indicate that Motins are components of the Hippo pathway, a signaling cascade involved in development and cancer. This review discusses how Motins are integrated into the Hippo signaling network, as either upstream regulators or downstream effectors, to modulate cell proliferation and migration. The repression of YAP/TAZ by Motins contributes to growth inhibition, whereas subcellular localization of Motins and their interactions with actin fibers are critical in regulating cell migration. The net effect of Motins on cell proliferation and migration may contribute to their diverse biological functions.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Pediatrics, Children's Hospital of Fudan University, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fa-Xing Yu
- Institute of Pediatrics, Children's Hospital of Fudan University, International Co-laboratory of Medical Epigenetics and Metabolism, State Key Laboratory of Genetic Engineering, Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Slaninová V, Heron-Milhavet L, Robin M, Jeanson L, Aissanou A, Kantar D, Tosi D, Bréhélin L, Gongora C, Djiane A. The Hippo pathway terminal effector TAZ/WWTR1 mediates oxaliplatin sensitivity in p53 proficient colon cancer cells. BMC Cancer 2024; 24:587. [PMID: 38741073 PMCID: PMC11092100 DOI: 10.1186/s12885-024-12316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
YAP and TAZ, the Hippo pathway terminal transcriptional activators, are frequently upregulated in cancers. In tumor cells, they have been mainly associated with increased tumorigenesis controlling different aspects from cell cycle regulation, stemness, or resistance to chemotherapies. In fewer cases, they have also been shown to oppose cancer progression, including by promoting cell death through the action of the p73/YAP transcriptional complex, in particular after chemotherapeutic drug exposure. Using HCT116 cells, we show here that oxaliplatin treatment led to core Hippo pathway down-regulation and nuclear accumulation of TAZ. We further show that TAZ was required for the increased sensitivity of HCT116 cells to oxaliplatin, an effect that appeared independent of p73, but which required the nuclear relocalization of TAZ. Accordingly, Verteporfin and CA3, two drugs affecting the activity of YAP and TAZ, showed antagonistic effects with oxaliplatin in co-treatments. Importantly, using several colorectal cell lines, we show that the sensitizing action of TAZ to oxaliplatin is dependent on the p53 status of the cells. Our results support thus an early action of TAZ to sensitize cells to oxaliplatin, consistent with a model in which nuclear TAZ in the context of DNA damage and p53 activity pushes cells towards apoptosis.
Collapse
Affiliation(s)
- Věra Slaninová
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | | | - Mathilde Robin
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
- LIRMM, Univ Montpellier, Inserm, CNRS, Montpellier, France
- Fondazione Gianni Bonadonna, Milan, Italy
| | - Laura Jeanson
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Adam Aissanou
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Diala Kantar
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
| | - Diego Tosi
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France
- Fondazione Gianni Bonadonna, Milan, Italy
| | | | - Céline Gongora
- IRCM, Univ Montpellier, Inserm, ICM, CNRS, Montpellier, France.
| | - Alexandre Djiane
- IRCM, Univ Montpellier, Inserm, ICM, Montpellier, France.
- IRCM, Univ Montpellier, Inserm, ICM, CNRS, Montpellier, France.
| |
Collapse
|
4
|
Harris AR, Panigrahi G, Liu H, Koparde VN, Bailey-Whyte M, Dorsey TH, Yates CC, Ambs S. Chromatin Accessibility Landscape of Human Triple-negative Breast Cancer Cell Lines Reveals Variation by Patient Donor Ancestry. CANCER RESEARCH COMMUNICATIONS 2023; 3:2014-2029. [PMID: 37732899 PMCID: PMC10552704 DOI: 10.1158/2767-9764.crc-23-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
African American (AA) women have an excessive risk of developing triple-negative breast cancer (TNBC). We employed Assay for Transposase-Accessible Chromatin using sequencing to characterize differences in chromatin accessibility between nine commonly used TNBC cell lines derived from patients of European and African ancestry. Principal component and chromosome mapping analyses of accessibility peaks with the most variance revealed separation of chromatin profiles by patient group. Motif enrichment and footprinting analyses of disparate open chromatin regions revealed differences in transcription factor activity, identifying 79 with ancestry-associated binding patterns (FDR < 0.01). AA TNBC cell lines exhibited increased accessibility for 62 transcription factors associated with epithelial-to-mesenchymal transition, cancer stemness/chemotherapeutic resistance, proliferation, and aberrant p53 regulation, as well as KAISO, which has been previously linked to aggressive tumor characteristics in AA patients with cancer. Differential Assay for Transposase-Accessible Chromatin signal analysis identified 1,596 genes located within promoters of differentially open chromatin regions in AA-derived TNBC, identifying DNA methyltransferase 1 as the top upregulated gene associated with African ancestry. Pathway analyses with these genes revealed enrichment in several pathways, including hypoxia. Culturing cells under hypoxia showed ancestry-specific stress responses that led to the identification of a core set of AA-associated transcription factors, which included members of the Kruppel-like factor and Sp subfamilies, as well as KAISO, and identified ZDHHC1, a gene previously implicated in immunity and STING activation, as the top upregulated AA-specific gene under hypoxia. Together, these data reveal a differential chromatin landscape in TNBC associated with donor ancestry. The open chromatin structure of AA TNBC may contribute to a more lethal disease. SIGNIFICANCE We identify an ancestry-associated open chromatin landscape and related transcription factors that may contribute to aggressive TNBC in AA women. Furthermore, this study advocates for the inclusion of diversely sourced cell lines in experimental in vitro studies to advance health equity at all levels of scientific research.
Collapse
Affiliation(s)
- Alexandra R. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Gatikrushna Panigrahi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Vishal N. Koparde
- Center for Cancer Research Collaborative Bioinformatics Resource Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland
- Advanced Biomedical Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Maeve Bailey-Whyte
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Tiffany H. Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Clayton C. Yates
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
5
|
Wörthmüller J, Disler S, Pradervand S, Richard F, Haerri L, Ruiz Buendía GA, Fournier N, Desmedt C, Rüegg C. MAGI1 Prevents Senescence and Promotes the DNA Damage Response in ER + Breast Cancer. Cells 2023; 12:1929. [PMID: 37566008 PMCID: PMC10417439 DOI: 10.3390/cells12151929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
MAGI1 acts as a tumor suppressor in estrogen receptor-positive (ER+) breast cancer (BC), and its loss correlates with a more aggressive phenotype. To identify the pathways and events affected by MAGI1 loss, we deleted the MAGI1 gene in the ER+ MCF7 BC cell line and performed RNA sequencing and functional experiments in vitro. Transcriptome analyses revealed gene sets and biological processes related to estrogen signaling, the cell cycle, and DNA damage responses affected by MAGI1 loss. Upon exposure to TNF-α/IFN-γ, MCF7 MAGI1 KO cells entered a deeper level of quiescence/senescence compared with MCF7 control cells and activated the AKT and MAPK signaling pathways. MCF7 MAGI1 KO cells exposed to ionizing radiations or cisplatin had reduced expression of DNA repair proteins and showed increased sensitivity towards PARP1 inhibition using olaparib. Treatment with PI3K and AKT inhibitors (alpelisib and MK-2206) restored the expression of DNA repair proteins and sensitized cells to fulvestrant. An analysis of human BC patients' transcriptomic data revealed that patients with low MAGI1 levels had a higher tumor mutational burden and homologous recombination deficiency. Moreover, MAGI1 expression levels negatively correlated with PI3K/AKT and MAPK signaling, which confirmed our in vitro observations. Pharmacological and genomic evidence indicate HDACs as regulators of MAGI1 expression. Our findings provide a new view on MAGI1 function in cancer and identify potential treatment options to improve the management of ER+ BC patients with low MAGI1 levels.
Collapse
Affiliation(s)
- Janine Wörthmüller
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Simona Disler
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Sylvain Pradervand
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, 1015 Lausanne, Switzerland
| | - François Richard
- Laboratory for Translational Breast Cancer Research, KU Leuven, 3000 Leuven, Belgium
| | - Lisa Haerri
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Gustavo A. Ruiz Buendía
- Translational Data Science-Facility, AGORA Cancer Research Center, Swiss Institute of Bioinformatics (SIB), Bugnon 25A, 1005 Lausanne, Switzerland
| | - Nadine Fournier
- Translational Data Science-Facility, AGORA Cancer Research Center, Swiss Institute of Bioinformatics (SIB), Bugnon 25A, 1005 Lausanne, Switzerland
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, KU Leuven, 3000 Leuven, Belgium
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
6
|
Kotelevets L, Chastre E. A New Story of the Three Magi: Scaffolding Proteins and lncRNA Suppressors of Cancer. Cancers (Basel) 2021; 13:4264. [PMID: 34503076 PMCID: PMC8428372 DOI: 10.3390/cancers13174264] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/16/2022] Open
Abstract
Scaffolding molecules exert a critical role in orchestrating cellular response through the spatiotemporal assembly of effector proteins as signalosomes. By increasing the efficiency and selectivity of intracellular signaling, these molecules can exert (anti/pro)oncogenic activities. As an archetype of scaffolding proteins with tumor suppressor property, the present review focuses on MAGI1, 2, and 3 (membrane-associated guanylate kinase inverted), a subgroup of the MAGUK protein family, that mediate networks involving receptors, junctional complexes, signaling molecules, and the cytoskeleton. MAGI1, 2, and 3 are comprised of 6 PDZ domains, 2 WW domains, and 1 GUK domain. These 9 protein binding modules allow selective interactions with a wide range of effectors, including the PTEN tumor suppressor, the β-catenin and YAP1 proto-oncogenes, and the regulation of the PI3K/AKT, the Wnt, and the Hippo signaling pathways. The frequent downmodulation of MAGIs in various human malignancies makes these scaffolding molecules and their ligands putative therapeutic targets. Interestingly, MAGI1 and MAGI2 genetic loci generate a series of long non-coding RNAs that act as a tumor promoter or suppressor in a tissue-dependent manner, by selectively sponging some miRNAs or by regulating epigenetic processes. Here, we discuss the different paths followed by the three MAGIs to control carcinogenesis.
Collapse
Affiliation(s)
- Larissa Kotelevets
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| | - Eric Chastre
- Sorbonne Université, INSERM, UMR_S938, Centre de Recherche Saint-Antoine (CRSA), 75012 Paris, France
| |
Collapse
|
7
|
Ordas L, Costa L, Lozano A, Chevillard C, Calovoulos A, Kantar D, Fernandez L, Chauvin L, Dosset P, Doucet C, Heron-Milhavet L, Odintsova E, Berditchevski F, Milhiet PE, Bénistant C. Mechanical Control of Cell Migration by the Metastasis Suppressor Tetraspanin CD82/KAI1. Cells 2021; 10:cells10061545. [PMID: 34207462 PMCID: PMC8234748 DOI: 10.3390/cells10061545] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/10/2021] [Accepted: 06/15/2021] [Indexed: 01/16/2023] Open
Abstract
The plasma membrane is a key actor of cell migration. For instance, its tension controls persistent cell migration and cell surface caveolae integrity. Then, caveolae constituents such as caveolin-1 can initiate a mechanotransduction loop that involves actin- and focal adhesion-dependent control of the mechanosensor YAP to finely tune cell migration. Tetraspanin CD82 (also named KAI-1) is an integral membrane protein and a metastasis suppressor. Its expression is lost in many cancers including breast cancer. It is a strong inhibitor of cell migration by a little-known mechanism. We demonstrated here that CD82 controls persistent 2D migration of EGF-induced single cells, stress fibers and focal adhesion sizes and dynamics. Mechanistically, we found that CD82 regulates membrane tension, cell surface caveolae abundance and YAP nuclear translocation in a caveolin-1-dependent manner. Altogether, our data show that CD82 controls 2D cell migration using membrane-driven mechanics involving caveolin and the YAP pathway.
Collapse
Affiliation(s)
- Laura Ordas
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Luca Costa
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Anthony Lozano
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
- Institut de Génétique Moléculaire de Montpellier, University Montpellier, CNRS, 34293 Montpellier, France
| | - Christopher Chevillard
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Alexia Calovoulos
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Diala Kantar
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194—University Montpellier—Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France; (D.K.); (L.H.-M.)
| | - Laurent Fernandez
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
- European Institute of Chemistry and Biology (IECB), University of Bordeaux, 33607 Pessac, France
| | - Lucie Chauvin
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), CNRS UMR 5237, University Montpellier, 34293 Montpellier, France;
| | - Patrice Dosset
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Christine Doucet
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
| | - Lisa Heron-Milhavet
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Inserm U1194—University Montpellier—Institut Régional du Cancer de Montpellier (ICM), 34298 Montpellier, France; (D.K.); (L.H.-M.)
| | - Elena Odintsova
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.O.); (F.B.)
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; (E.O.); (F.B.)
| | - Pierre-Emmanuel Milhiet
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
- Correspondence: (P.-E.M.); (C.B.)
| | - Christine Bénistant
- Centre de Biologie Structurale (CBS), CNRS, INSERM, University Montpellier, 34090 Montpellier, France; (L.O.); (L.C.); (A.L.); (C.C.); (A.C.); (L.F.); (P.D.); (C.D.)
- Correspondence: (P.-E.M.); (C.B.)
| |
Collapse
|
8
|
MAGI1, a Scaffold Protein with Tumor Suppressive and Vascular Functions. Cells 2021; 10:cells10061494. [PMID: 34198584 PMCID: PMC8231924 DOI: 10.3390/cells10061494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/04/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
MAGI1 is a cytoplasmic scaffolding protein initially identified as a component of cell-to-cell contacts stabilizing cadherin-mediated cell–cell adhesion in epithelial and endothelial cells. Clinical-pathological and experimental evidence indicates that MAGI1 expression is decreased in some inflammatory diseases, and also in several cancers, including hepatocellular carcinoma, colorectal, cervical, breast, brain, and gastric cancers and appears to act as a tumor suppressor, modulating the activity of oncogenic pathways such as the PI3K/AKT and the Wnt/β-catenin pathways. Genomic mutations and other mechanisms such as mechanical stress or inflammation have been described to regulate MAGI1 expression. Intriguingly, in breast and colorectal cancers, MAGI1 expression is induced by non-steroidal anti-inflammatory drugs (NSAIDs), suggesting a role in mediating the tumor suppressive activity of NSAIDs. More recently, MAGI1 was found to localize at mature focal adhesion and to regulate integrin-mediated adhesion and signaling in endothelial cells. Here, we review MAGI1′s role as scaffolding protein, recent developments in the understanding of MAGI1 function as tumor suppressor gene, its role in endothelial cells and its implication in cancer and vascular biology. We also discuss outstanding questions about its regulation and potential translational implications in oncology.
Collapse
|