1
|
Yang H, Liu B, Park J, Blaise O, Duchesne C, Honnorat B, Vizet J, Rousseau A, Pierangelo A. Mueller polarimetric imaging as a tool for detecting the effect of non-thermal plasma treatment on the skin. BIOMEDICAL OPTICS EXPRESS 2023; 14:2736-2755. [PMID: 37342717 PMCID: PMC10278602 DOI: 10.1364/boe.482753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 06/23/2023]
Abstract
Non-thermal plasma (NTP) is a promising technique studied for several medical applications such as wound healing or tumor reduction. The detection of microstructural variations in the skin is currently performed by histological methods, which are time-consuming and invasive. This study aims to show that full-field Mueller polarimetric imaging is suitable for fast and without-contact detection of skin microstructure modifications induced by plasma treatment. Defrosted pig skin is treated by NTP and analyzed by MPI within 30 minutes. NTP is shown to modify the linear phase retardance and the total depolarization. The tissue modifications are inhomogeneous and present distinct features at the center and the fringes of the plasma-treated area. According to control groups, tissue alterations are primarily caused by the local heating concomitant to plasma-skin interaction.
Collapse
Affiliation(s)
- Hang Yang
- LPP, Ecole Polytechnique, CNRS, IP Paris,
Sorbonne Université, Palaiseau,
91128, France
| | - Bo Liu
- LPP, Ecole Polytechnique, CNRS, IP Paris,
Sorbonne Université, Palaiseau,
91128, France
| | - Junha Park
- LPICM, Ecole Polytechnique, CNRS, IP Paris, Palaiseau, 91128, France
| | - Océane Blaise
- LPP, Ecole Polytechnique, CNRS, IP Paris,
Sorbonne Université, Palaiseau,
91128, France
| | - Constance Duchesne
- LPP, Ecole Polytechnique, CNRS, IP Paris,
Sorbonne Université, Palaiseau,
91128, France
| | - Bruno Honnorat
- LPP, Ecole Polytechnique, CNRS, IP Paris,
Sorbonne Université, Palaiseau,
91128, France
| | - Jérémy Vizet
- LPICM, Ecole Polytechnique, CNRS, IP Paris, Palaiseau, 91128, France
| | - Antoine Rousseau
- LPP, Ecole Polytechnique, CNRS, IP Paris,
Sorbonne Université, Palaiseau,
91128, France
| | - Angelo Pierangelo
- LPICM, Ecole Polytechnique, CNRS, IP Paris, Palaiseau, 91128, France
| |
Collapse
|
2
|
Rehbinder J, Vizet J, Park J, Ossikovski R, Vanel JC, Nazac A, Pierangelo A. Depolarization imaging for fast and non-invasive monitoring of cervical microstructure remodeling in vivo during pregnancy. Sci Rep 2022; 12:12321. [PMID: 35853917 PMCID: PMC9296502 DOI: 10.1038/s41598-022-15852-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/30/2022] [Indexed: 11/12/2022] Open
Abstract
The cervix plays a crucial role in conception, maintenance of pregnancy, and childbirth. The mechanical properties of a pregnant woman's cervix change dramatically during gestation due to a remodeling of its microstructure, necessary for delivery. However, external factors can accelerate this process and lead to prematurity, the primary cause of perinatal mortality worldwide, due to the inefficiency of existing diagnostic methods. This study shows that polarized light is a powerful tool to probe the cervical microstructure during pregnancy. A wide-field multispectral polarimetric imaging system was fabricated to explore in vivo the cervix of full-term pregnant women. The polarimetric properties of the cervix change significantly with pregnancy progression. In particular, a set of several depolarization parameters (intrinsic and extrinsic) showed a strong linear correlation with gestational age in the red part of the visible spectral range. This trend can be attributed, among other things, to a decrease in collagen density and an increase in hydration of cervical connective tissue. Wide field depolarization imaging is a very promising tool for rapid and non-invasive analysis of cervical tissue in vivo to monitor the steady progression of pregnancy, providing the practitioner with useful information to improve the detection of preterm birth.
Collapse
Affiliation(s)
- Jean Rehbinder
- ICube, CNRS, Université de Strasbourg, 67412, Illkirch Cedex, France
| | - Jérémy Vizet
- LPICM, CNRS, Ecole polytechnique, IP Paris, 91128, Palaiseau, France
| | - Junha Park
- LPICM, CNRS, Ecole polytechnique, IP Paris, 91128, Palaiseau, France
| | | | | | - André Nazac
- Department of Gynaecology, Iris Sud Ixelles Hospital, 1050, Ixelles, Belgium
| | - Angelo Pierangelo
- LPICM, CNRS, Ecole polytechnique, IP Paris, 91128, Palaiseau, France.
| |
Collapse
|
3
|
Bibikova EA, Kundikova ND, Mukhin YV, Chirkov VV. Composite polarization systems for independent controlling polarization of two beams with different wavelengths. BIOMEDICAL OPTICS EXPRESS 2021; 12:4046-4055. [PMID: 34457398 PMCID: PMC8367228 DOI: 10.1364/boe.427907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 05/31/2023]
Abstract
The usage of independent and simultaneous control of the state of light polarization at different wavelengths can expand the capabilities of polarization methods for biomedical application. Unfortunately, all known methods of polarization conversion cannot convert the state of light polarization at different wavelengths independently. We propose a method and device for independent and simultaneous control of the polarization state at two wavelengths. We have theoretically proved the possibility of maintaining the phase shift at the first wavelength unchanged while simultaneously and independently changing the phase shift at the second wavelength from 0 to 180 degrees. The capabilities of the method were for the first time demonstrated for radiation with wavelengths λ = 632.8 nm and λ = 488 nm. At the wavelength λ = 632.8 nm, the phase shift remained equal to 180° whereas at the wavelength λ = 488 nm, it varied in the range from 121° to 136°.
Collapse
Affiliation(s)
- Evelina A. Bibikova
- Institute of Electrophysics, Ural Branch of the RAS, Yekaterinburg, Russia
- South Ural State University, Chelyabinsk, Russia
| | - Nataliya D. Kundikova
- Institute of Electrophysics, Ural Branch of the RAS, Yekaterinburg, Russia
- South Ural State University, Chelyabinsk, Russia
| | - Yurii V. Mukhin
- Institute of Electrophysics, Ural Branch of the RAS, Yekaterinburg, Russia
- South Ural State University, Chelyabinsk, Russia
| | | |
Collapse
|