1
|
Zhang T, Xu Z, Wang Y, Gao Q. Effects of soil properties and microbial community composition on ginsenosides accumulation in farmland ginseng. Front Bioeng Biotechnol 2024; 12:1462342. [PMID: 39308698 PMCID: PMC11413589 DOI: 10.3389/fbioe.2024.1462342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 09/25/2024] Open
Abstract
Soil is the material basis of ginseng survival, and revealing the correlation between soil and ginsenoside has far-reaching significance for the sustainable development of ginseng industry. In this study, the content of ginsenosides in 3-year-old ginseng roots, the physicochemical properties of rhizosphere soil and the microbial community composition were studied. The results showed that the contents of total saponins in different months were significantly different. The richness and diversity of soil microbial community decreased with the extension of planting time. The activities of complexed iron, organic matter and protease in soil had significant effects on α-diversity of soil microbial community. Functional gene analysis showed that carbon sequestration, protein translation, nitrogen metabolism, transcription factors and chlorophyll metabolism were the main functions of soil bacterial community. The results of correlation analysis and redundancy analysis showed that pH, available potassium, organic matter, complexed iron, Firmicutes and Acidobacteria were the key factors affecting ginsenoside accumulation. The changes of soil physical and chemical properties affect the abundance of soil microorganism, and the accumulation of ginsenoside in ginseng is affected by soil microorganism. A co-regulatory network of Physicochemical Properties-Microbe-Ginsenoside was established. To provide theoretical support for the cultivation of ginseng.
Collapse
Affiliation(s)
- Tao Zhang
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Zhefeng Xu
- Changchun University of Traditional Chinese Medicine, Jilin Provincial Institute of Ginseng Science, Changchun, China
| | - Yibing Wang
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Qiao Gao
- School of Pharmacy, Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
2
|
Hao Y, Dong P, Wang L, Ke X, Hao X, He G, Chen Y, Guo F. Predicting the Potential Distribution of Hypericum perforatum under Climate Change Scenarios Using a Maximum Entropy Model. BIOLOGY 2024; 13:452. [PMID: 38927332 PMCID: PMC11201051 DOI: 10.3390/biology13060452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/09/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
H. perforatum, as one of the Traditional Chinese Medicinal materials, possesses a variety of pharmacological activities and high medicinal value. However, in recent years, the wild resources of H. perforatum have been severely depleted due to global climate change and human activities, and artificial cultivation faces problems such as unstable yield and active ingredient content. This poses a serious obstacle to the development and utilization of its resources. Therefore, this experiment took H. perforatum as the research object and used 894 distribution records of H. perforatum and 36 climatic environmental factors, using the MaxEnt model and GIS technology to explore the main climatic factors affecting the distribution of H. perforatum. Additionally, by utilizing the principles of ecological niche theory, the potential suitable distribution regions of H. perforatum across past, present, and future timelines were predicted, which can ascertain the dynamics of its spatial distribution patterns and the trend of centroid migration. The results indicate that the main environmental factors affecting the geographical distribution of H. perforatum are solar radiation in April (Srad4), solar radiation in September (Srad9), mean temperature of driest quarter (Bio9), solar radiation in November (Srad11), annual mean temperature (Bio1), and annual precipitation (Bio12). Under future climate scenarios, there is a remarkable trend of expansion in the suitable distribution areas of H. perforatum. The centroid migration indicates a trend of migration towards the northwest direction and high-altitude areas. These results can provide a scientific basis for formulating conservation and sustainable use management strategies for H. perforatum resources.
Collapse
Affiliation(s)
- Yulan Hao
- College of Agronomy, Gansu Provincial Key Laboratory of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (P.D.); (L.W.)
| | - Pengbin Dong
- College of Agronomy, Gansu Provincial Key Laboratory of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (P.D.); (L.W.)
| | - Liyang Wang
- College of Agronomy, Gansu Provincial Key Laboratory of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (P.D.); (L.W.)
| | - Xiao Ke
- Sichuan Kanghong Chinese Herbal Medicine Planting Co., Ltd., Chengdu 611930, China; (X.K.); (X.H.); (G.H.)
| | - Xiaofeng Hao
- Sichuan Kanghong Chinese Herbal Medicine Planting Co., Ltd., Chengdu 611930, China; (X.K.); (X.H.); (G.H.)
| | - Gang He
- Sichuan Kanghong Chinese Herbal Medicine Planting Co., Ltd., Chengdu 611930, China; (X.K.); (X.H.); (G.H.)
| | - Yuan Chen
- College of Agronomy, Gansu Provincial Key Laboratory of Good Agricultural Production for Traditional Chinese Medicines, Gansu Provincial Engineering Research Centre for Medical Plant Cultivation and Breeding, Gansu Agricultural University, Lanzhou 730070, China; (Y.H.); (P.D.); (L.W.)
- Sichuan Kanghong Chinese Herbal Medicine Planting Co., Ltd., Chengdu 611930, China; (X.K.); (X.H.); (G.H.)
| | - Fengxia Guo
- College of Life Science and Technology, Gansu Provincial Key Laboratory of Arid Land Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
3
|
Zhao L, Xu W, Guan H, Wang K, Xiang P, Wei F, Yang S, Miao C, Ma LQ. Biochar increases Panax notoginseng's survival under continuous cropping by improving soil properties and microbial diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157990. [PMID: 35963414 DOI: 10.1016/j.scitotenv.2022.157990] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Replant problem is widespread in agricultural production and causes serious economic losses, which has limited sustainable cultivation of Panax notoginseng (PN), a well-known medicinal plant in Asia. Here we conducted a field experiment to investigate the effectiveness and possible mechanisms of biochar to improve its survival under continuous cropping. Biochar from tobacco stems was applied at 4 rates of 9.0, 12, 15, and 18 t/ha to a soil where PN has been continuously cultivated for 10 years. After 18 months, soil properties, 5 allelochemicals, including p-hydroxybenzoic acid, vanillic acid, syringic acid, p-coumaric acid, and ferulic acid, key pathogen Fusarium oxysporum, microbial community, and PN survival rate were investigated. Our results show that 10 years' continuous PN cropping led to soil acidification, accumulation of NH4+-N and F. oxysporum, and low PN survival rate. However, biochar increased its survival rate from 6.0% in the control to 69.5% under 15 t/ha treatment. Moreover, soil pH, available P and K, organic matter content, and microbial diversity were increased while NH4+-N and allelochemicals vanillic acid and syringic acid contents were decreased under biochar treatment (P<0.05). Soil available K increased from 177 to 283 mg·kg-1 while NH4+-N decreased from 6.73 to 4.79 mg·kg-1 under 15 t/ha treatment. Further, soil pH, available P and K, and microbial diversity (bacteria and fungi) were positively correlated with PN survival rate, however, NH4+-N content was negatively correlated (P<0.05). Our study indicates that biochar effectively increased the survival rate of Panax notoginseng under continuous cropping by improving soil properties and microbial diversity.
Collapse
Affiliation(s)
- Linyan Zhao
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Wumei Xu
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, Kunming, Yunnan 650500, China; Yunnan Provincial Renewable Energy Engineering Key Laboratory, Yunnan Normal University, Kunming, Yunnan 650500, China.
| | - Huilin Guan
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, Kunming, Yunnan 650500, China; Yunnan Provincial Renewable Energy Engineering Key Laboratory, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Kunyan Wang
- Yunnan Provincial Observation and Research Station of Soil Degradation and Restoration for Cultivating Plateau Traditional Chinese Medicinal Plants, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Ping Xiang
- Institute of Environmental Remediation and Human Health, Southwest Forestry University, Kunming, Yunnan 650224, China
| | - Fugang Wei
- Wenshan Miaoxiang Sanqi Technology Co., Ltd., Wenshan 663099, China
| | - Shaozhou Yang
- Wenshan Miaoxiang Sanqi Technology Co., Ltd., Wenshan 663099, China
| | - Cuiping Miao
- Yunnan Institute of Microbiology, Yunnan University, Kunming 650000, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Liao LB, Chen XX, Xiang J, Zhang NN, Wang ET, Shi FS. Zanthoxylum bungeanum root-rot associated shifts in microbiomes of root endosphere, rhizosphere, and soil. PeerJ 2022; 10:e13808. [PMID: 35945942 PMCID: PMC9357373 DOI: 10.7717/peerj.13808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/07/2022] [Indexed: 01/18/2023] Open
Abstract
Root-rot disease has lead to serious reduction in yields and jeopardized the survival of the economically and ecologically important Zanthoxylum bungeanum trees cultured in Sichuan Province. In order to investigate the interaction between the microbiome and the root-rot disease, a metagenomic analysis was performed to characterize the microbial communities and functions in Z. bungeanum root endosphere, rhizosphere and bulk soil with/without root-rot disease. Soil physicochemical properties, microbial population size and enzyme activities were also analyzed for finding their interactions with the root-rot disease. As results, lower total nitrogen (TN) and available phosphorus (AP) contents but higher pH in rhizosphere and bulk soil, as well as lower substrate-induced respiration (SIR) and higher protease activity in bulk soil of diseased trees were found, in comparison with that of healthy trees. Microbial diversity and community composition were changed by root-rot disease in the endosphere, but not in rhizosphere and bulk soils. The endophytic microbiome of diseased trees presented higher Proteobacteria abundance and lower abundances of Bacteroidetes, Firmicutes and dominant fungal phyla. The relative abundances of nitrogen cycle- and carbon cycle-related genes in endophytic microbiomes were different between the diseased and healthy trees. Based on ANOSIM and PCoA, functional profiles (KEGG and CAZy) of microbiomes in rhizosphere and bulk soil shifted significantly between the diseased and healthy trees. In addition, soil pH, TN, AP, SIR, invertase and protease were estimated as the main factors influencing the shifts of taxonomic and functional groups in microbiomes of rhizosphere and bulk soil. Conclusively, the imbalance of root and soil microbial function groups might lead to shifts in the root endosphere-rhizosphere microenvironment, which in turn resulted in Z. bungeanum root-rot.
Collapse
Affiliation(s)
- Li Bin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China,University of Chinese Academy of Sciences, Beijing, China,CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chendu, China
| | - Xiao Xia Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China,University of Chinese Academy of Sciences, Beijing, China,CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chendu, China
| | - Jun Xiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Nan Nan Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China,CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chendu, China
| | - En Tao Wang
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Fu Sun Shi
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China,CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chendu, China
| |
Collapse
|