1
|
Drayson OGG, Montay-Gruel P, Limoli CL. Radiomics approach for identifying radiation-induced normal tissue toxicity in the lung. Sci Rep 2024; 14:24256. [PMID: 39415029 PMCID: PMC11484882 DOI: 10.1038/s41598-024-75993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024] Open
Abstract
The rapidly evolving field of radiomics has shown that radiomic features are able to capture characteristics of both tumor and normal tissue that can be used to make accurate and clinically relevant predictions. In the present study we sought to determine if radiomic features can characterize the adverse effects caused by normal tissue injury as well as identify if human embryonic stem cell (hESC) derived extracellular vesicle (EV) treatment can resolve certain adverse complications. A cohort of 72 mice (n = 12 per treatment group) were exposed to X-ray radiation to the whole lung (3 × 8 Gy) or to the apex of the right lung (3 × 12 Gy), immediately followed by retro-orbital injection of EVs. Cone-Beam Computed Tomography images were acquired before and 2 weeks after treatment. In total, 851 radiomic features were extracted from the whole lungs and < 20 features were selected to train and validate a series of random forest classification models trained to predict radiation status, EV status and treatment group. It was found that all three classification models achieved significantly high prediction accuracies on a validation subset of the dataset (AUCs of 0.91, 0.86 and 0.80 respectively). In the locally irradiated lung, a significant difference between irradiated and unirradiated groups as well as an EV sparing effect were observed in several radiomic features that were not seen in the unirradiated lung (including wavelet-LLH Kurtosis, wavelet HLL Large Area High Gray Level Emphasis, and Gray Level Non-Uniformity). Additionally, a radiation difference was not observed in a secondary comparison cohort, but there was no impact of imaging machine parameters on the radiomic signature of unirradiated mice. Our data demonstrate that radiomics has the potential to identify radiation-induced lung injury and could be applied to predict therapeutic efficacy at early timepoints.
Collapse
Affiliation(s)
- Olivia G G Drayson
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA.
- Dept. of Radiation Oncology, University of California, Irvine, CA, 92617-2695, USA.
| | - Pierre Montay-Gruel
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA
- Antwerp Research in Radiation Oncology (AReRO), Centre for Oncological Research (CORE), University of Antwerp, Antwerp, Belgium
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, CA, 92697-2695, USA
| |
Collapse
|
2
|
Manem VS, Taghizadeh-Hesary F. Advances in personalized radiotherapy. BMC Cancer 2024; 24:556. [PMID: 38702617 PMCID: PMC11067189 DOI: 10.1186/s12885-024-12317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Radiotherapy is a mainstay of cancer treatment. The clinical response to radiotherapy is heterogeneous, from a complete response to early progression. Recent studies have explored the importance of patient characteristics in response to radiotherapy. In this editorial, we invite contributions for a BMC Cancer collection of articles titled 'Advances in personalized radiotherapy' towards the improvement of treatment response.
Collapse
Affiliation(s)
- Venkata Sk Manem
- Centre de Recherche du CHU de Québec - Université Laval, Quebec, Canada
- Department of Mathematics and Computer Science, University of Quebec at Trois-Rivières, Quebec, Canada
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
- Department of Radiation Oncology, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Giannitto C, Carnicelli G, Lusi S, Ammirabile A, Casiraghi E, De Virgilio A, Esposito AA, Farina D, Ferreli F, Franzese C, Frigerio GM, Lo Casto A, Malvezzi L, Lorini L, Othman AE, Preda L, Scorsetti M, Bossi P, Mercante G, Spriano G, Balzarini L, Francone M. The Use of Artificial Intelligence in Head and Neck Cancers: A Multidisciplinary Survey. J Pers Med 2024; 14:341. [PMID: 38672968 PMCID: PMC11050769 DOI: 10.3390/jpm14040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Artificial intelligence (AI) approaches have been introduced in various disciplines but remain rather unused in head and neck (H&N) cancers. This survey aimed to infer the current applications of and attitudes toward AI in the multidisciplinary care of H&N cancers. From November 2020 to June 2022, a web-based questionnaire examining the relationship between AI usage and professionals' demographics and attitudes was delivered to different professionals involved in H&N cancers through social media and mailing lists. A total of 139 professionals completed the questionnaire. Only 49.7% of the respondents reported having experience with AI. The most frequent AI users were radiologists (66.2%). Significant predictors of AI use were primary specialty (V = 0.455; p < 0.001), academic qualification and age. AI's potential was seen in the improvement of diagnostic accuracy (72%), surgical planning (64.7%), treatment selection (57.6%), risk assessment (50.4%) and the prediction of complications (45.3%). Among participants, 42.7% had significant concerns over AI use, with the most frequent being the 'loss of control' (27.6%) and 'diagnostic errors' (57.0%). This survey reveals limited engagement with AI in multidisciplinary H&N cancer care, highlighting the need for broader implementation and further studies to explore its acceptance and benefits.
Collapse
Affiliation(s)
- Caterina Giannitto
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Giorgia Carnicelli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Stefano Lusi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Elena Casiraghi
- Department of Computer Science “Giovanni degli Antoni”, University of Milan, Via Celoria 18, 20133 Milan, Italy;
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, 717 Potter Street, Berkeley, CA 94710, USA
| | - Armando De Virgilio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | | | - Davide Farina
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia ASST Spedali Civili of Brescia, 25123 Brescia, Italy;
| | - Fabio Ferreli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Ciro Franzese
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Radiotherapy and Radiosurgery IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Gian Marco Frigerio
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Antonio Lo Casto
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University Hospital of Palermo, 90127 Palermo, Italy;
| | - Luca Malvezzi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Luigi Lorini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Medical Oncology and Hematology Unit IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Ahmed E. Othman
- Department of Neuroradiology, University Medical Center Mainz, 55131 Mainz, Germany;
| | - Lorenzo Preda
- Radiology Unit, Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, 27100 Pavia, Italy;
| | - Marta Scorsetti
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Radiotherapy and Radiosurgery IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Paolo Bossi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Giuseppe Mercante
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Giuseppe Spriano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Luca Balzarini
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy (G.M.F.); (L.L.); (P.B.)
- Department of Diagnostic and Interventional Radiology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| |
Collapse
|
4
|
Osapoetra LO, Dasgupta A, DiCenzo D, Fatima K, Quiaoit K, Saifuddin M, Karam I, Poon I, Husain Z, Tran WT, Sannachi L, Czarnota GJ. Quantitative US Delta Radiomics to Predict Radiation Response in Individuals with Head and Neck Squamous Cell Carcinoma. Radiol Imaging Cancer 2024; 6:e230029. [PMID: 38391311 PMCID: PMC10988345 DOI: 10.1148/rycan.230029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 02/24/2024]
Abstract
Purpose To investigate the role of quantitative US (QUS) radiomics data obtained after the 1st week of radiation therapy (RT) in predicting treatment response in individuals with head and neck squamous cell carcinoma (HNSCC). Materials and Methods This prospective study included 55 participants (21 with complete response [median age, 65 years {IQR: 47-80 years}, 20 male, one female; and 34 with incomplete response [median age, 59 years {IQR: 39-79 years}, 33 male, one female) with bulky node-positive HNSCC treated with curative-intent RT from January 2015 to October 2019. All participants received 70 Gy of radiation in 33-35 fractions over 6-7 weeks. US radiofrequency data from metastatic lymph nodes were acquired prior to and after 1 week of RT. QUS analysis resulted in five spectral maps from which mean values were extracted. We applied a gray-level co-occurrence matrix technique for textural analysis, leading to 20 QUS texture and 80 texture-derivative parameters. The response 3 months after RT was used as the end point. Model building and evaluation utilized nested leave-one-out cross-validation. Results Five delta (Δ) parameters had statistically significant differences (P < .05). The support vector machines classifier achieved a sensitivity of 71% (15 of 21), a specificity of 76% (26 of 34), a balanced accuracy of 74%, and an area under the receiver operating characteristic curve of 0.77 on the test set. For all the classifiers, the performance improved after the 1st week of treatment. Conclusion A QUS Δ-radiomics model using data obtained after the 1st week of RT from individuals with HNSCC predicted response 3 months after treatment completion with reasonable accuracy. Keywords: Computer-Aided Diagnosis (CAD), Ultrasound, Radiation Therapy/Oncology, Head/Neck, Radiomics, Quantitative US, Radiotherapy, Head and Neck Squamous Cell Carcinoma, Machine Learning Clinicaltrials.gov registration no. NCT03908684 Supplemental material is available for this article. © RSNA, 2024.
Collapse
Affiliation(s)
| | | | - Daniel DiCenzo
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Kashuf Fatima
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Karina Quiaoit
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Murtuza Saifuddin
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Irene Karam
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Ian Poon
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Zain Husain
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - William T. Tran
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Lakshmanan Sannachi
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| | - Gregory J. Czarnota
- From the Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P.,
Z.H., W.T.T., G.J.C.), Medical Oncology (W.T.T.), and Medicine (W.T.T.),
Sunnybrook Health Sciences Centre, 2075 Bayview Ave, Toronto, ON, Canada M4N
3M5; Departments of Radiation Oncology (L.O.O., A.D., I.K., I.P., Z.H., W.T.T.,
G.J.C.) and Medical Biophysics (G.J.C.), University of Toronto, Toronto, Canada;
and Departments of Physical Sciences (L.O.O., A.D., D.D., K.F., K.Q., M.S.,
L.S., G.J.C.) and Evaluative Clinical Sciences (W.T.T.), Sunnybrook Research
Institute, Toronto, Canada
| |
Collapse
|
5
|
Drayson OG, Gruel PM, Limoli CL. Radiomics approach for identifying radiation-induced normal tissue toxicity in the lung. RESEARCH SQUARE 2024:rs.3.rs-3951996. [PMID: 38464210 PMCID: PMC10925422 DOI: 10.21203/rs.3.rs-3951996/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Radiomic features were used in efforts to characterize radiation-induced normal tissue injury as well as identify if human embryonic stem cell (hESC) derived Extracellular Vesicle (EV) treatment could resolve certain adverse complications. A cohort of mice (n=12/group) were given whole lung irradiation (3×8Gy), local irradiation to the right lung apex (3×12Gy), or no irradiation. The hESC-derived EVs were systemically administered three times via retro-orbital injection immediately after each irradiation. Cone-Beam Computed Tomography (CBCT) images were acquired at baseline and 2 weeks after the final radiation/EV treatment. Whole lung image segmentation was performed and radiomic features were extracted with wavelet filtering applied. A total of 851 features were extracted per image and recursive feature elimination was used to refine, train and validate a series of random forest classification models. Classification models trained to identify irradiated from unirradiated animals or EV treated from vehicle-injected animals achieved high prediction accuracies (94% and 85%). In addition, radiomic features from the locally irradiated dataset showed significant radiation impact and EV sparing effects that were absent in the unirradiated left lung. Our data demonstrates that radiomics has the potential to characterize radiation-induced lung injury and identify therapeutic efficacy at early timepoints.
Collapse
|
6
|
Tonneau M, Nebbache R, Larnaudie A, Thureau S, Pointreau Y, Blanchard P, Thariat J. Management of head and neck carcinomas with synchronous or metachronous oligometastatic disease: Role of locoregional radiotherapy and metastasis-directed radiotherapy. Cancer Radiother 2024; 28:83-92. [PMID: 37620212 DOI: 10.1016/j.canrad.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/19/2023] [Accepted: 03/28/2023] [Indexed: 08/26/2023]
Abstract
Head and neck carcinomas are initially metastatic in about 15% of cases. Radiotherapy is a cornerstone in the multimodal strategy at the locoregional phase. In patients with head and neck cancer, often heavily pretreated and with comorbidities, who relapse locoregionally or at distant sites, radiotherapy has also become increasingly important at the metastatic phase. Data on the optimal sequence of systemic treatments and metastasis-directed treatments including stereotactic irradiation are still lacking. Several randomized head and neck trials have been initiated that should provide important answers, including one recent GORTEC trial.
Collapse
Affiliation(s)
- M Tonneau
- Service d'oncologie radiothérapie, CRLCC Oscar-Lambret, 3, rue Frédéric-Combemale, Lille, France
| | - R Nebbache
- Service d'oncologie radiothérapie, hôpital européen Georges-Pompidou, Paris, France
| | - A Larnaudie
- Département d'oncologie radiothérapie, centre François-Baclesse, Caen, France
| | - S Thureau
- Département de radiothérapie et de physique médicale, centre Henri-Becquerel, Rouen, France; Unité QuantIF Litis EA 4108, université de Rouen, Rouen, France; Département d'imagerie, centre Henri-Becquerel, Rouen, France
| | - Y Pointreau
- Institut inter-régional de cancérologie (ILC), centre Jean-Bernard, centre de cancérologie de la Sarthe (CCS), 64, rue de Degré, 72000 Le Mans, France
| | - P Blanchard
- Department of Radiation Oncology, Gustave-Roussy, université Paris Saclay, Inserm U1018 Oncostat, Villejuif, France
| | - J Thariat
- Département d'oncologie radiothérapie, centre François-Baclesse, Caen, France; Laboratoire de physique corpusculaire/IN2P3-CNRS UMR 6534, Unicaen-université de Normandie, 14000 Caen, France.
| |
Collapse
|
7
|
Implementation of Non-Invasive Quantitative Ultrasound in Clinical Cancer Imaging. Cancers (Basel) 2022; 14:cancers14246217. [PMID: 36551702 PMCID: PMC9776858 DOI: 10.3390/cancers14246217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Quantitative ultrasound (QUS) is a non-invasive novel technique that allows treatment response monitoring. Studies have shown that QUS backscatter variables strongly correlate with changes observed microscopically. Increases in cell death result in significant alterations in ultrasound backscatter parameters. In particular, the parameters related to scatterer size and scatterer concentration tend to increase in relation to cell death. The use of QUS in monitoring tumor response has been discussed in several preclinical and clinical studies. Most of the preclinical studies have utilized QUS for evaluating cell death response by differentiating between viable cells and dead cells. In addition, clinical studies have incorporated QUS mostly for tissue characterization, including classifying benign versus malignant breast lesions, as well as responder versus non-responder patients. In this review, we highlight some of the important findings of previous preclinical and clinical studies and expand the applicability and therapeutic benefits of QUS in clinical settings. We summarized some recent clinical research advances in ultrasound-based radiomics analysis for monitoring and predicting treatment response and characterizing benign and malignant breast lesions. We also discuss current challenges, limitations, and future prospects of QUS-radiomics.
Collapse
|
8
|
Li G, Wu X, Ma X. Artificial intelligence in radiotherapy. Semin Cancer Biol 2022; 86:160-171. [PMID: 35998809 DOI: 10.1016/j.semcancer.2022.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/18/2022] [Indexed: 11/19/2022]
Abstract
Radiotherapy is a discipline closely integrated with computer science. Artificial intelligence (AI) has developed rapidly over the past few years. With the explosive growth of medical big data, AI promises to revolutionize the field of radiotherapy through highly automated workflow, enhanced quality assurance, improved regional balances of expert experiences, and individualized treatment guided by multi-omics. In addition to independent researchers, the increasing number of large databases, biobanks, and open challenges significantly facilitated AI studies on radiation oncology. This article reviews the latest research, clinical applications, and challenges of AI in each part of radiotherapy including image processing, contouring, planning, quality assurance, motion management, and outcome prediction. By summarizing cutting-edge findings and challenges, we aim to inspire researchers to explore more future possibilities and accelerate the arrival of AI radiotherapy.
Collapse
Affiliation(s)
- Guangqi Li
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xin Wu
- Head & Neck Oncology ward, Division of Radiotherapy Oncology, Cancer Center, West China Hospital, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China
| | - Xuelei Ma
- Division of Biotherapy, Cancer Center, West China Hospital and State Key Laboratory of Biotherapy, Sichuan University, No. 37 GuoXue Alley, Chengdu 610041, China.
| |
Collapse
|
9
|
A novel 3D pillar/well array platform using patient-derived head and neck tumor to predict the individual radioresponse. Transl Oncol 2022; 24:101483. [PMID: 35850059 PMCID: PMC9294182 DOI: 10.1016/j.tranon.2022.101483] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/24/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
Radiotherapy is a critical modality in head and neck cancer treatment. A novel 3D pillar/well array platform provides the individual radioresponse biomarker, RTauc. Poor and good radioresponse group by RTauc correlates with other clinical features. RTauc shows potential for radioresponse biomarker, useful in clinical decision-making.
Predicting individual radiotherapy (RT) response is valuable in managing head and neck squamous cell carcinoma (HNSCC). We assessed the feasibility of our novel 3D culture platform to measure radioresponse using patient-derived cells (PDCs) from HNSCC patients. Cells from the FaDu line and tumor samples from 39 HNSCC patients were cultivated serially in MatrigelTM on a 3D pillar/well array culture system. The 3D tumor models were exposed to 0 to 8 Gy of radiation dose, and the radioresponse index (RTauc, area under the dose-response curve) was measured quantitatively with Calcein AM staining of live tumor cells. Calcein AM fluorescence showed reduced density and the number of FaDu colonies as radiation increased, implying a dose-dependent effect on cell viability in the 3D pillar/well culture system. 3D tumor models using PDCs were established successfully from 39 HNSCC patient tumor samples, maintaining original genomic and pathological characteristics. These 3D tumor models were exposed to ionizing radiation on a 3D pillar/well array, with a mean period of 12 days from tumor harvest to the measurement of RTauc. The RTauc of all PDCs varied from 3.5 to 9.4, and the lower 40th percentile (Z-score = -0.26) was considered a good radioresponse group with a threshold RTauc of 4.6. The good radioresponse group showed fewer adverse features than others. As of the last follow-up, recurrence-free survival was better in the good radioresponse group (p = 0.037). 3D pillar/well array platforms using PDC could rapidly quantify radioresponse index in patients with HNSCC, showing potential as a novel prognosticator.
Collapse
|
10
|
Abdollahi H, Chin E, Clark H, Hyde DE, Thomas S, Wu J, Uribe CF, Rahmim A. Radiomics-guided radiation therapy: opportunities and challenges. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac6fab] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Radiomics is an advanced image-processing framework, which extracts image features and considers them as biomarkers towards personalized medicine. Applications include disease detection, diagnosis, prognosis, and therapy response assessment/prediction. As radiation therapy aims for further individualized treatments, radiomics could play a critical role in various steps before, during and after treatment. Elucidation of the concept of radiomics-guided radiation therapy (RGRT) is the aim of this review, attempting to highlight opportunities and challenges underlying the use of radiomics to guide clinicians and physicists towards more effective radiation treatments. This work identifies the value of RGRT in various steps of radiotherapy from patient selection to follow-up, and subsequently provides recommendations to improve future radiotherapy using quantitative imaging features.
Collapse
|
11
|
Bhardwaj D, Dasgupta A, DiCenzo D, Brade S, Fatima K, Quiaoit K, Trudeau M, Gandhi S, Eisen A, Wright F, Look-Hong N, Curpen B, Sannachi L, Czarnota GJ. Early Changes in Quantitative Ultrasound Imaging Parameters during Neoadjuvant Chemotherapy to Predict Recurrence in Patients with Locally Advanced Breast Cancer. Cancers (Basel) 2022; 14:cancers14051247. [PMID: 35267555 PMCID: PMC8909335 DOI: 10.3390/cancers14051247] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND This study was conducted to explore the use of quantitative ultrasound (QUS) in predicting recurrence for patients with locally advanced breast cancer (LABC) early during neoadjuvant chemotherapy (NAC). METHODS Eighty-three patients with LABC were scanned with 7 MHz ultrasound before starting NAC (week 0) and during treatment (week 4). Spectral parametric maps were generated corresponding to tumor volume. Twenty-four textural features (QUS-Tex1) were determined from parametric maps acquired using grey-level co-occurrence matrices (GLCM) for each patient, which were further processed to generate 64 texture derivatives (QUS-Tex1-Tex2), leading to a total of 95 features from each time point. Analysis was carried out on week 4 data and compared to baseline (week 0) data. ∆Week 4 data was obtained from the difference in QUS parameters, texture features (QUS-Tex1), and texture derivatives (QUS-Tex1-Tex2) of week 4 data and week 0 data. Patients were divided into two groups: recurrence and non-recurrence. Machine learning algorithms using k-nearest neighbor (k-NN) and support vector machines (SVMs) were used to generate radiomic models. Internal validation was undertaken using leave-one patient out cross-validation method. RESULTS With a median follow up of 69 months (range 7-118 months), 28 patients had disease recurrence. The k-NN classifier was the best performing algorithm at week 4 with sensitivity, specificity, accuracy, and area under curve (AUC) of 87%, 75%, 81%, and 0.83, respectively. The inclusion of texture derivatives (QUS-Tex1-Tex2) in week 4 QUS data analysis led to the improvement of the classifier performances. The AUC increased from 0.70 (0.59 to 0.79, 95% confidence interval) without texture derivatives to 0.83 (0.73 to 0.92) with texture derivatives. The most relevant features separating the two groups were higher-order texture derivatives obtained from scatterer diameter and acoustic concentration-related parametric images. CONCLUSIONS This is the first study highlighting the utility of QUS radiomics in the prediction of recurrence during the treatment of LABC. It reflects that the ongoing treatment-related changes can predict clinical outcomes with higher accuracy as compared to pretreatment features alone.
Collapse
Affiliation(s)
- Divya Bhardwaj
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Archya Dasgupta
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Daniel DiCenzo
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Stephen Brade
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Kashuf Fatima
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Karina Quiaoit
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Maureen Trudeau
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (M.T.); (S.G.); (A.E.)
- Department of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Sonal Gandhi
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (M.T.); (S.G.); (A.E.)
- Department of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Andrea Eisen
- Department of Medical Oncology, Department of Medicine, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (M.T.); (S.G.); (A.E.)
- Department of Medicine, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Frances Wright
- Department of Surgical Oncology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (F.W.); (N.L.-H.)
- Department of Surgery, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Nicole Look-Hong
- Department of Surgical Oncology, Department of Surgery, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; (F.W.); (N.L.-H.)
- Department of Surgery, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Belinda Curpen
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada;
- Department of Medical Imaging, University of Toronto, Toronto, ON M4N 3M5, Canada
| | - Lakshmanan Sannachi
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
| | - Gregory J. Czarnota
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (D.B.); (A.D.); (D.D.); (S.B.); (K.F.); (K.Q.); (L.S.)
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M4N 3M5, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M4N 3M5, Canada
- Correspondence: ; Tel.: +416-480-6128
| |
Collapse
|
12
|
Application of Machine Learning Methods to Improve the Performance of Ultrasound in Head and Neck Oncology: A Literature Review. Cancers (Basel) 2022; 14:cancers14030665. [PMID: 35158932 PMCID: PMC8833587 DOI: 10.3390/cancers14030665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Ultrasound (US) is a non-invasive imaging method that is routinely utilized in head and neck cancer patients to assess the anatomic extent of tumors, nodal and non-nodal neck masses and for imaging the salivary glands. In this review, we summarize the present evidence on whether the application of machine learning (ML) methods can potentially improve the performance of US in head and neck cancer patients. We found that published clinical literature on ML methods applied to US datasets was limited but showed evidence of improved diagnostic and prognostic performance. However, a majority of these studies were based on retrospective evaluation and conducted at a single center with a limited number of datasets. The conduct of multi-center studies could help better validate the performance of ML-based US radiomics and facilitate the integration of these approaches into routine clinical practice. Abstract Radiomics is a rapidly growing area of research within radiology that involves the extraction and modeling of high-dimensional quantitative imaging features using machine learning/artificial intelligence (ML/AI) methods. In this review, we describe the published clinical evidence on the application of ML methods to improve the performance of ultrasound (US) in head and neck oncology. A systematic search of electronic databases (MEDLINE, PubMed, clinicaltrials.gov) was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Of 15,080 initial articles identified, 34 studies were selected for in-depth analysis. Twenty-five out of 34 studies (74%) focused on the diagnostic application of US radiomics while 6 (18%) studies focused on response assessment and 3 (8%) studies utilized US radiomics for modeling normal tissue toxicity. Support vector machine (SVM) was the most commonly employed ML method (47%) followed by multivariate logistic regression (24%) and k-nearest neighbor analysis (21%). Only 11/34 (~32%) of the studies included an independent validation set. A majority of studies were retrospective in nature (76%) and based on single-center evaluation (85%) with variable numbers of patients (12–1609) and imaging datasets (32–1624). Despite these limitations, the application of ML methods resulted in improved diagnostic and prognostic performance of US highlighting the potential clinical utility of this approach.
Collapse
|