1
|
Bigham A, Fasolino I, Borsacchi S, Valente C, Calucci L, Turacchio G, Pannico M, Serrano-Ruiz M, Ambrosio L, Raucci MG. A theragenerative bio-nanocomposite consisting of black phosphorus quantum dots for bone cancer therapy and regeneration. Bioact Mater 2024; 35:99-121. [PMID: 38283385 PMCID: PMC10818087 DOI: 10.1016/j.bioactmat.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024] Open
Abstract
Recently, the term theragenerative has been proposed for biomaterials capable of inducing therapeutic approaches followed by repairing/regenerating the tissue/organ. This study is focused on the design of a new theragenerative nanocomposite composed of an amphiphilic non-ionic surfactant (Pluronic F127), bioactive glass (BG), and black phosphorus (BP). The nanocomposite was prepared through a two-step synthetic strategy, including a microwave treatment that turned BP nanosheets (BPNS) into quantum dots (BPQDs) with 5 ± 2 nm dimensions in situ. The effects of surfactant and microwave treatment were assessed in vitro: the surfactant distributes the ions homogenously throughout the composite and the microwave treatment chemically stabilizes the composite. The presence of BP enhanced bioactivity and promoted calcium phosphate formation in simulated body fluid. The inherent anticancer activity of BP-containing nanocomposites was tested against osteosarcoma cells in vitro, finding that 150 μg mL-1 was the lowest concentration which prevented the proliferation of SAOS-2 cells, while the counterpart without BP did not affect the cell growth rate. Moreover, the apoptosis pathways were evaluated and a mechanism of action was proposed. NIR irradiation was applied to induce further proliferation suppression on SAOS-2 cells through hyperthermia. The inhibitory effects of bare BP nanomaterials and nanocomposites on the migration and invasion of bone cancer, breast cancer, and prostate cancer cells were assessed in vitro to determine the anticancer potential of nanomaterials against primary and secondary bone cancers. The regenerative behavior of the nanocomposites was tested with healthy osteoblasts and human mesenchymal stem cells; the BPQDs-incorporated nanocomposite significantly promoted the proliferation of osteoblast cells and induced the osteogenic differentiation of stem cells. This study introduces a new multifunctional theragenerative platform with promising potential for simultaneous bone cancer therapy and regeneration.
Collapse
Affiliation(s)
- Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125, Naples, Italy
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Piazzale V. Tecchio 80, 80125, Naples, Italy
| | - Ines Fasolino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125, Naples, Italy
| | - Silvia Borsacchi
- Institute for the Chemistry of OrganoMetallic Compounds-ICCOM, Italian National Research Council-CNR, via G. Moruzzi 1, 56124, Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), 56126, Pisa, Italy
| | - Carmen Valente
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Lucia Calucci
- Institute for the Chemistry of OrganoMetallic Compounds-ICCOM, Italian National Research Council-CNR, via G. Moruzzi 1, 56124, Pisa, Italy
- Center for Instrument Sharing of the University of Pisa (CISUP), 56126, Pisa, Italy
| | - Gabriele Turacchio
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), Via Pietro Castellino 111, 80131, Napoli, Italy
| | - Marianna Pannico
- Institute of Polymers, Composites, and Biomaterials, National Research Council of Italy (IPCB-CNR), Pozzuoli, Italy
| | - Manuel Serrano-Ruiz
- Institute for the Chemistry of OrganoMetallic Compounds-ICCOM, National Research Council-CNR, Sesto Fiorentino, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125, Naples, Italy
| | - Maria Grazia Raucci
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy (IPCB-CNR), Viale John Fitzgerald Kennedy 54, Mostra d’Oltremare Padiglione 20, 80125, Naples, Italy
| |
Collapse
|
2
|
Qiu M, Tulufu N, Tang G, Ye W, Qi J, Deng L, Li C. Black Phosphorus Accelerates Bone Regeneration Based on Immunoregulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304824. [PMID: 37953457 PMCID: PMC10767454 DOI: 10.1002/advs.202304824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/25/2023] [Indexed: 11/14/2023]
Abstract
A fundamental understanding of inflammation and tissue healing suggests that the precise regulation of the inflammatory phase, both in terms of location and timing, is crucial for bone regeneration. However, achieving the activation of early inflammation without causing chronic inflammation while facilitating quick inflammation regression to promote bone regeneration continues to pose challenges. This study reveals that black phosphorus (BP) accelerates bone regeneration by building an osteogenic immunological microenvironment. BP amplifies the acute pro-inflammatory response and promotes the secretion of anti-inflammatory factors to accelerate inflammation regression and tissue regeneration. Mechanistically, BP creates an osteoimmune-friendly microenvironment by stimulating macrophages to express interleukin 33 (IL-33), amplifying the inflammatory response at an early stage, and promoting the regression of inflammation. In addition, BP-mediated IL-33 expression directly promotes osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), which further facilitates bone repair. To the knowledge, this is the first study to reveal the immunomodulatory potential of BP in bone regeneration through the regulation of both early-stage inflammatory responses and later-stage inflammation resolution, along with the associated molecular mechanisms. This discovery serves as a foundation for the clinical use of BP and is an efficient approach for managing the immune microenvironment during bone regeneration.
Collapse
Affiliation(s)
- Minglong Qiu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Nijiati Tulufu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Guoqing Tang
- Kunshan Hospital of Traditional Chinese MedicineAffiliated Hospital of Yangzhou University388 Zuchongzhi RoadKunshan CityJiangsu Province215300P. R. China
| | - Wenkai Ye
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Jin Qi
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Lianfu Deng
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| | - Changwei Li
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of Medicine197 Ruijin 2nd RoadShanghai200025P. R. China
| |
Collapse
|
3
|
Erdogan MA, Ugo D, Ines F. The role of ion channels in the relationship between the immune system and cancer. CURRENT TOPICS IN MEMBRANES 2023; 92:151-198. [PMID: 38007267 DOI: 10.1016/bs.ctm.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
The immune system is capable of identifying and eliminating cancer, a complicated illness marked by unchecked cellular proliferation. The significance of ion channels in the complex interaction between the immune system and cancer has been clarified by recent studies. Ion channels, which are proteins that control ion flow across cell membranes, have variety of physiological purposes, such as regulating immune cell activity and tumor development. Immune cell surfaces contain ion channels, which have been identified to control immune cell activation, motility, and effector activities. The regulation of immune responses against cancer cells has been linked to a number of ion channels, including potassium, calcium, and chloride channels. As an example, potassium channels are essential for regulating T cell activation and proliferation, which are vital for anti-tumor immunity. Calcium channels play a crucial role when immune cells produce cytotoxic chemicals in order to eliminate cancer cells. Chloride channels also affect immune cell infiltration and invasion into malignancies. Additionally, tumor cells' own expressed ion channels have an impact on their behavior and in the interaction with the immune system. The proliferation, resistance to apoptosis, and immune evasion of cancer cells may all be impacted by changes in ion channel expression and function. Ion channels may also affect the tumor microenvironment by controlling angiogenesis, inflammatory responses, and immune cell infiltration. Ion channel function in the interaction between the immune system and cancer has important implications for cancer treatment. A possible method to improve anti-tumor immune responses and stop tumor development is to target certain ion channels. Small compounds and antibodies are among the ion channel modulators under investigation as possible immunotherapeutics. The complex interaction between ion channels, the immune system, and cancer highlights the significance of these channels for tumor immunity. The development of novel therapeutic strategies for the treatment of cancer will be made possible by unraveling the processes by which ion channels control immune responses and tumor activity. Hence, the main driving idea of the present chapter is trying to understand the possible function of ion channels in the complex crosstalk between cancer and immunoresponse. To this aim, after giving a brief journey of ion channels throughout the history, a classification of the main ion channels involved in cancer disease will be discussed. Finally, the last paragraph will focus on more recently advancements in the use of biomaterials as therapeutic strategy for cancer treatment. The hope is that future research will take advantage of the promising combination of ion channels, immunomodulation and biomaterials filed to provide better solutions in the treatment of cancer disease.
Collapse
Affiliation(s)
- Mumin Alper Erdogan
- Izmir Katip Celebi University Faculty of Medicine, Department of Physiology, Izmir, Turkey.
| | - D'Amora Ugo
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Fasolino Ines
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| |
Collapse
|
4
|
Chianese G, Fasolino I, Tramontano C, De Stefano L, Imparato C, Aronne A, Ambrosio L, Raucci MG, Rea I. ROS-Generating Hyaluronic Acid-Modified Zirconium Dioxide-Acetylacetonate Nanoparticles as a Theranostic Platform for the Treatment of Osteosarcoma. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:54. [PMID: 36615964 PMCID: PMC9823868 DOI: 10.3390/nano13010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Materials that are able to produce free radicals have gained increasing attention for environmental and biomedical purposes. Free radicals, such as the superoxide anion (O2•-), act as secondary messengers in many physiological pathways, such as cell survival. Therefore, the production of free radicals over physiological levels has been exploited in the treatment of different types of cancer, including osteosarcoma (OS). In most cases, the production of reactive oxygen species (ROS) by materials is light-induced and requires the use of chemical photosensitisers, making it difficult and expensive. Here, for the first time, we propose photoluminescent hybrid ZrO2-acetylacetonate nanoparticles (ZrO2-acac NPs) that are capable of generating O2•- without light activation as an adjuvant for the treatment of OS. To increase the uptake and ROS generation in cancer cells, we modify the surface of ZrO2-acac NPs with hyaluronic acid (HA), which recognizes and binds to the surface antigen CD44 overexpressed on OS cells. Since these nanoparticles emit in the visible range, their uptake into cancer cells can be followed by a label-free approach. Overall, we show that the generation of O2•- is toxic to OS cells and can be used as an adjuvant treatment to increase the efficacy of conventional drugs.
Collapse
Affiliation(s)
- Giovanna Chianese
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80131 Naples, Italy
| | - Ines Fasolino
- National Research Council, Institute of Polymers, Composites and Biomaterials, 80131 Naples, Italy
| | - Chiara Tramontano
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80131 Naples, Italy
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| | - Luca De Stefano
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80131 Naples, Italy
| | - Claudio Imparato
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Antonio Aronne
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, 80125 Naples, Italy
| | - Luigi Ambrosio
- National Research Council, Institute of Polymers, Composites and Biomaterials, 80131 Naples, Italy
| | - Maria Grazia Raucci
- National Research Council, Institute of Polymers, Composites and Biomaterials, 80131 Naples, Italy
| | - Ilaria Rea
- Unit of Naples, National Research Council, Institute of Applied Sciences and Intelligent Systems, 80131 Naples, Italy
| |
Collapse
|
5
|
Bartus Pravda C, Hegedűs T, Oliveira EF, Berkesi D, Szamosvölgyi Á, Kónya Z, Vajtai R, Kukovecz Á. Hexagonal Boron Nitride Nanosheets Protect Exfoliated Black Phosphorus Layers from Ambient Oxidation. ADVANCED MATERIALS INTERFACES 2022. [DOI: 10.1002/admi.202200857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Cora Bartus Pravda
- Interdisciplinary Excellence Centre Department of Applied and Environmental Chemistry University of Szeged Rerrich Béla tér 1 Szeged H‐6720 Hungary
| | - Tímea Hegedűs
- Interdisciplinary Excellence Centre Department of Applied and Environmental Chemistry University of Szeged Rerrich Béla tér 1 Szeged H‐6720 Hungary
| | | | - Dániel Berkesi
- Interdisciplinary Excellence Centre Department of Applied and Environmental Chemistry University of Szeged Rerrich Béla tér 1 Szeged H‐6720 Hungary
| | - Ákos Szamosvölgyi
- Interdisciplinary Excellence Centre Department of Applied and Environmental Chemistry University of Szeged Rerrich Béla tér 1 Szeged H‐6720 Hungary
| | - Zoltán Kónya
- Interdisciplinary Excellence Centre Department of Applied and Environmental Chemistry University of Szeged Rerrich Béla tér 1 Szeged H‐6720 Hungary
- MTA‐SZTE Reaction Kinetics and Surface Chemistry Research Group University of Szeged Rerrich Béla tér 1 Szeged H‐6720 Hungary
| | - Róbert Vajtai
- Department of Materials Science and NanoEngineering Rice University 6100 Main Street Houston Texas 77005 USA
| | - Ákos Kukovecz
- Interdisciplinary Excellence Centre Department of Applied and Environmental Chemistry University of Szeged Rerrich Béla tér 1 Szeged H‐6720 Hungary
| |
Collapse
|
6
|
Label-Free Morpho-Molecular Imaging for Studying the Differential Interaction of Black Phosphorus with Tumor Cells. NANOMATERIALS 2022; 12:nano12121994. [PMID: 35745333 PMCID: PMC9227604 DOI: 10.3390/nano12121994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/02/2022]
Abstract
Black phosphorus nanosheets (2D BP) are emerging as very promising, highly selective chemotherapeutic agents due to their fast degradation in the intracellular matrix of cancer cells. Here, optical diffraction tomography (ODT) and Raman spectroscopy were exploited as a powerful label-free approach to achieve integrated insights into the processes accompanying the administration of exfoliated 2D BP flakes in human prostatic adenocarcinoma and normal human prostate epithelial cells. Our ODT experiments provided unambiguous visualization of the 2D BP internalization in cancer cells and the morphological modifications of those cells in the apoptotic phase. The cellular internalization and damaging occurred, respectively, 18 h and 36–48 h after the 2D BP administration. Changes in the chemical properties of the internalized 2D BP flakes were monitored by Raman spectroscopy. Interestingly, a fast oxidation process of the 2D BP flakes was activated in the intracellular matrix of the cancer cells after 24 h of incubation. This was in sharp contrast to the low 2D BP uptake and minimal chemical changes observed in the normal cells. Along with the understanding of the 2D BP fate in the cancer cells, the proposed label-free morpho-molecular approach offers a powerful, rapid tool to study the pharmacokinetic properties of engineered nanomaterials in preclinical research.
Collapse
|