1
|
Ahmadi S, Hasani A, Khabbaz A, Poortahmasbe V, Hosseini S, Yasdchi M, Mehdizadehfar E, Mousavi Z, Hasani R, Nabizadeh E, Nezhadi J. Dysbiosis and fecal microbiota transplant: Contemplating progress in health, neurodegeneration and longevity. Biogerontology 2024; 25:957-983. [PMID: 39317918 DOI: 10.1007/s10522-024-10136-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024]
Abstract
The gut-brain axis plays an important role in mental health. The intestinal epithelial surface is colonized by billions of commensal and transitory bacteria, known as the Gut Microbiota (GM). However, potential pathogens continuously stimulate intestinal immunity when they find the place. The last two decades have witnessed several studies revealing intestinal bacteria as a key factor in the health-disease balance of the gut, as well as disease-emergent in other parts of the body. Various neurological processes, such as cognition, learning, and memory, could be affected by dysbiosis in GM. Additionally, the aging process and longevity are related to systemic inflammation caused by dysbiosis. Commensal GM affects brain development, behavior, and healthy aging suggesting that building changes in GM might be a potential therapeutic method. The innovation in GM dysbiosis is intervention by Fecal Microbiota Transplantation (FMT), which has been confirmed as a therapy for recurrent Clostridium difficile infections and is promising for other clinical disorders, such as Parkinson's disease, Multiple Sclerosis (MS), Alzheimer's disease, and depression. Additionally, FMT may be possible to promote healthy aging, and extend longevity. This review aims to connect dysbiosis, neurological disorders, and aging and the potential of FMT as a therapeutic strategy to treat these disorders, and to enhance the quality of life in the elderly.
Collapse
Affiliation(s)
- Somayeh Ahmadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students Research Committee, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alka Hasani
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Sina Educational, Research and Treatment Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aytak Khabbaz
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahdat Poortahmasbe
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Hosseini
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Yasdchi
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Mehdizadehfar
- Neurosciences Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Mousavi
- Department of Psychology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roqaiyeh Hasani
- School of Medicine, Istanbul Okan University, Tuzla, 34959, Istanbul, Turkey
| | - Edris Nabizadeh
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Nezhadi
- Infectious and Tropical Diseases Research Center, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Baek JS, Lee DY, Han SW, Kim DH. A probiotic NVP1704 alleviates stress-induced sleeplessness/depression-like symptoms in mice by upregulating serotonergic and GABAergic systems and downregulating NF-κB activation. Lett Appl Microbiol 2024; 77:ovae065. [PMID: 38977897 DOI: 10.1093/lambio/ovae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Sleeplessness (insomnia) is a potential symptom of depression. A probiotic NVP1704 alleviates depression-like behavior and neuroinflammation in mice. Therefore, to understand whether NVP1704 could be effective against sleeplessness in vivo, we exposed immobilization stress (IS) in mice, then orally administered NVP1704 for 5 days, and assayed depression/anxiety-like behavior in the open field, elevated plus maze, and tail suspension tests, sleeping latency time, and sleep duration, euthanized then by exposure to CO2, and analyzed their related biomarkers. Oral administration of NVP1704 decreased IS-induced depression/anxiety-like behavior and sleeping latency time and increased IS-suppressed sleeping duration. NVP1704 increased IS-suppressed expression of γ-aminobutyric acid (GABA), GABAA receptor α1 (GABAARα1) and α2 subunits (GABAARα2), serotonin, 5-HT receptors (5-HT1AR and 5-HT1BR), and melatonin receptors (MT1R and MT2R) in the prefrontal cortex and thalamus. NVP1704 also increased the IS-suppressed GABAARα1-positive cell population in the prefrontal cortex and decreased IS-induced corticosterone, TNF-α, and IL-6 expression and the NF-κB+Iba1+ cell population in the brain and myeloperoxidase, TNF-α, and IL-6 expression and the NF-κB+CD11c+ cell population in the colon. Based on these findings, NVP1704 may alleviate depression/anxiety/sleeplessness-like behaviors through the upregulation of serotonergic and GABAergic systems and downregulation of NF-κB activation.
Collapse
Affiliation(s)
- Ji-Su Baek
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
| | - Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
| | - Seung-Won Han
- PB Department, NVP Healthcare, Inc., Suwon 16209, Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Dongdaemun-gu, Seoul 02447, Korea
| |
Collapse
|
3
|
Wang S, Zhou S, Han Z, Yu B, Xu Y, Lin Y, Chen Y, Jin Z, Li Y, Cao Q, Xu Y, Zhang Q, Wang YC. From gut to brain: understanding the role of microbiota in inflammatory bowel disease. Front Immunol 2024; 15:1384270. [PMID: 38576620 PMCID: PMC10991805 DOI: 10.3389/fimmu.2024.1384270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
With the proposal of the "biological-psychological-social" model, clinical decision-makers and researchers have paid more attention to the bidirectional interactive effects between psychological factors and diseases. The brain-gut-microbiota axis, as an important pathway for communication between the brain and the gut, plays an important role in the occurrence and development of inflammatory bowel disease. This article reviews the mechanism by which psychological disorders mediate inflammatory bowel disease by affecting the brain-gut-microbiota axis. Research progress on inflammatory bowel disease causing "comorbidities of mind and body" through the microbiota-gut-brain axis is also described. In addition, to meet the needs of individualized treatment, this article describes some nontraditional and easily overlooked treatment strategies that have led to new ideas for "psychosomatic treatment".
Collapse
Affiliation(s)
- Siyu Wang
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Shuwei Zhou
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhongyu Han
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Bin Yu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yumeng Lin
- Eye School of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yutong Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zi Jin
- Department of Anesthesiology and Pain Rehabilitation, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yalong Li
- Anorectal Department, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, China
| | - Qinhan Cao
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine (TCM), Chengdu, China
| | - Yunying Xu
- Clinical Medical School, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Qiang Zhang
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Yuan-Cheng Wang
- Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Zhang X, Rao M, Gao P. 5-HT-treated mouse B cells alleviate ulcerative colitis via RIPK1: Insights from proteomic and phosphoproteomic analyses. J Proteomics 2024; 295:105085. [PMID: 38246418 DOI: 10.1016/j.jprot.2024.105085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
5-hydroxytryptamine (5-HT) exerts various physiological effects on the intestine through different signaling pathways and molecular transmission mechanisms, including pro- and anti-inflammatory effects. Adoptive transfer of regulatory B cells (Bregs) into colitis mice has exhibited significant therapeutic benefits. We aimed to elucidate the mechanism through which 5-HT-treated B cells alleviate ulcerative colitis. To this end, we analyzed the proteomic and phosphoproteomic profiles of 5-HT-stimulated B cells from naïve mice. We identified 3124 phosphorylation sites in proteins via tandem mass tagging and found 110 differential peptides after protein phosphorylation. Furthermore, we obtained three differential proteins, RIPK1, ATXN2l, and Q8C5K5 through integration of both proteomic datasets. We discovered and validated that 5-HT binds to 5-HT7R and increases the expression of RIPK1 in B cells. We propose a theoretical and experimental basis for further research on the RIPK1 signaling pathway, kinase prediction, and phosphorylation sites in ulcerative colitis. SIGNIFICANCE: Some researchers demonstrated that 5-HT can effectively suppress colitis through a variety of molecular mechanisms. Our study discovered and consistently validated the 5-HT/5-HT7R/RIPK1 pathway, further clarifying the molecular mechanism through which 5-HT stimulates B cells to alleviate intestinal inflammation.
Collapse
Affiliation(s)
- Xiuna Zhang
- Department of Gastroenterology, Lequn Branch, The First Hospital of Jilin University, Changchun 130000, China
| | - Min Rao
- Department of Gastroenterology, Lequn Branch, The First Hospital of Jilin University, Changchun 130000, China
| | - Pujun Gao
- Department of Gastroenterology, Lequn Branch, The First Hospital of Jilin University, Changchun 130000, China.
| |
Collapse
|
5
|
Borgiani G, Possidente C, Fabbri C, Oliva V, Bloemendaal M, Arias Vasquez A, Dinan TG, Vieta E, Menchetti M, De Ronchi D, Serretti A, Fanelli G. The bidirectional interaction between antidepressants and the gut microbiota: are there implications for treatment response? Int Clin Psychopharmacol 2024:00004850-990000000-00121. [PMID: 38991101 DOI: 10.1097/yic.0000000000000533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
This review synthesizes the evidence on associations between antidepressant use and gut microbiota composition and function, exploring the microbiota's possible role in modulating antidepressant treatment outcomes. Antidepressants exert an influence on measures of gut microbial diversity. The most consistently reported differences were in β-diversity between those exposed to antidepressants and those not exposed, with longitudinal studies supporting a potential causal association. Compositional alterations in antidepressant users include an increase in the Bacteroidetes phylum, Christensenellaceae family, and Bacteroides and Clostridium genera, while a decrease was found in the Firmicutes phylum, Ruminococcaceae family, and Ruminococcus genus. In addition, antidepressants attenuate gut microbial differences between depressed and healthy individuals, modulate microbial serotonin transport, and influence microbiota's metabolic functions. These include lyxose degradation, peptidoglycan maturation, membrane transport, and methylerythritol phosphate pathways, alongside gamma-aminobutyric acid metabolism. Importantly, baseline increased α-diversity and abundance of the Roseburia and Faecalibacterium genera, in the Firmicutes phylum, are associated with antidepressant response, emerging as promising biomarkers. This review highlights the potential for gut microbiota as a predictor of treatment response and emphasizes the need for further research to elucidate the mechanisms underlying antidepressant-microbiota interactions. More homogeneous studies and standardized techniques are required to confirm these initial findings.
Collapse
Affiliation(s)
- Gianluca Borgiani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Chiara Possidente
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Chiara Fabbri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Vincenzo Oliva
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Mirjam Bloemendaal
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt, Germany
| | - Alejandro Arias Vasquez
- Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Ted G Dinan
- APC Microbiome Ireland
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - Eduard Vieta
- Departament de Medicina, Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB)
- Bipolar and Depressive Disorders Unit, Hospìtal Clinic de Barcelona
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Marco Menchetti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Diana De Ronchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Serretti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Medicine and Surgery, Kore University of Enna, Italy
| | - Giuseppe Fanelli
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Zou H, Gao H, Liu Y, Zhang Z, Zhao J, Wang W, Ren B, Tan X. Dietary inulin alleviated constipation induced depression and anxiety-like behaviors: Involvement of gut microbiota and microbial metabolite short-chain fatty acid. Int J Biol Macromol 2024; 259:129420. [PMID: 38219945 DOI: 10.1016/j.ijbiomac.2024.129420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/27/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Chronic constipation has been associated with depression-like behavior. Previous study identified the crucial role of gut microbiota in the development of constipation and depression. Dietary inulin (INU) could regulate gut microbiota. Whether INU treatment could ameliorate constipation induced depression was not clear. For this purpose, male CD-1 mice were administered diphenoxylate (20 mg/kg body weight/day) to induce constipation. We found that INU (10 % in standard diet) alleviated the diphenoxylate-induced constipation, manifested as the increase weight and moisture content of feces. Furthermore, the associated depression and anxiety-like behavior disorders were improved by inhibiting neuro-inflammation and preventing synaptic ultrastructure damage under INU treatment. Moreover, INU pretreatment improved the diphenoxylate-induced gut barrier damage by upregulating tight junction protein expression. INU also reshaped gut microbiota in constipation mice by increasing the relative abundance of Bacteroides and Proteobacteria and downregulating the abundance of Muribacalum and Melaminabacteria. The effects of INU on diphenoxylate-induced depression were abolished by gut microbiota depletion via antibiotic treatment. In addition, INU increased the concentration of short chain fatty acids (SCFAs) in feces contents. Meanwhile, supplementation of SCFAs could also partly improve diphenoxylate-induced depression. In conclusion, INU intake was a potential nutritional intervention strategy to prevent constipation induced depression via microbiota-gut-SCFAs axis.
Collapse
Affiliation(s)
- Hui Zou
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology, Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, China
| | - Huajing Gao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology, Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, China
| | - Yanhong Liu
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology, Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, China
| | - Zhiwo Zhang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology, Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, China
| | - Jia Zhao
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology, Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, China
| | - Wenxuan Wang
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology, Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, China
| | - Bo Ren
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Xintong Tan
- College of Food Science and Engineering, Key Laboratory of Food Processing Technology, Quality Control of Shandong Higher Education Institutes, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
7
|
Ma X, Shin JW, Cho JH, Han SW, Kim DH. IL-6 expression-suppressing Lactobacillus reuteri strains alleviate gut microbiota-induced anxiety and depression in mice. Lett Appl Microbiol 2024; 77:ovad144. [PMID: 38126116 DOI: 10.1093/lambio/ovad144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 12/23/2023]
Abstract
Fecal microbiota transplantation from patients with depression/inflammatory bowel disease (PDI) causes depression with gut inflammation in mice. Here, we investigated the effects of six Lactobacillus reuteri strains on brain-derived neurotropic factor (BDNF), serotonin, and interleukin (IL)-6 expression in neuronal or macrophage cells and PDI fecal microbiota-cultured microbiota (PcM)-induced depression in mice. Of these strains, L6 most potently increased BDNF and serotonin levels in corticosterone-stimulated SH-SY5Y and PC12 cells, followed by L3. L6 most potently decreased IL-6 expression in lipopolysaccharide (LPS)-stimulated macrophages. When L1 (weakest in vitro), L3, and L6 were orally administered in mice with PcM-induced depression, L6 most potently suppressed depression-like behaviors and hippocampal TNF-α and IL-6 expression and increased hippocampal serotonin, BDNF, 5HT7, GABAARα1, and GABABR1b expression, followed by L3 and L1. L6 also suppressed TNF-α and IL-6 expression in the colon. BDNF or serotonin levels in corticosterone-stimulated neuronal cells were negatively correlated with depression-related biomarkers in PcM-transplanted mice, while IL-6 levels in LPS-stimulated macrophage were positively correlated. These findings suggest that IL-6 expression-suppressing and BDNF/serotonin expression-inducing LBPs in vitro, particularly L6, may alleviate gut microbiota-involved depression with colitis in vivo.
Collapse
Affiliation(s)
- Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| | - Jeong-Woo Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| | - Jae-Hyun Cho
- PB Department, NVP Healthcare, Inc., Suwon 16209, South Korea
| | - Seung-Won Han
- PB Department, NVP Healthcare, Inc., Suwon 16209, South Korea
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, South Korea
| |
Collapse
|
8
|
Leigh SJ, Uhlig F, Wilmes L, Sanchez-Diaz P, Gheorghe CE, Goodson MS, Kelley-Loughnane N, Hyland NP, Cryan JF, Clarke G. The impact of acute and chronic stress on gastrointestinal physiology and function: a microbiota-gut-brain axis perspective. J Physiol 2023; 601:4491-4538. [PMID: 37756251 DOI: 10.1113/jp281951] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
The physiological consequences of stress often manifest in the gastrointestinal tract. Traumatic or chronic stress is associated with widespread maladaptive changes throughout the gut, although comparatively little is known about the effects of acute stress. Furthermore, these stress-induced changes in the gut may increase susceptibility to gastrointestinal disorders and infection, and impact critical features of the neural and behavioural consequences of the stress response by impairing gut-brain axis communication. Understanding the mechanisms behind changes in enteric nervous system circuitry, visceral sensitivity, gut barrier function, permeability, and the gut microbiota following stress is an important research objective with pathophysiological implications in both neurogastroenterology and psychiatry. Moreover, the gut microbiota has emerged as a key aspect of physiology sensitive to the effects of stress. In this review, we focus on different aspects of the gastrointestinal tract including gut barrier function as well as the immune, humoral and neuronal elements involved in gut-brain communication. Furthermore, we discuss the evidence for a role of stress in gastrointestinal disorders. Existing gaps in the current literature are highlighted, and possible avenues for future research with an integrated physiological perspective have been suggested. A more complete understanding of the spatial and temporal dynamics of the integrated host and microbial response to different kinds of stressors in the gastrointestinal tract will enable full exploitation of the diagnostic and therapeutic potential in the fast-evolving field of host-microbiome interactions.
Collapse
Affiliation(s)
- Sarah-Jane Leigh
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Friederike Uhlig
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - Lars Wilmes
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Paula Sanchez-Diaz
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Cassandra E Gheorghe
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Michael S Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Nancy Kelley-Loughnane
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Dayton, Ohio, USA
| | - Niall P Hyland
- APC Microbiome Ireland, Cork, Ireland
- Department of Physiology, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, Cork, Ireland
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, Cork, Ireland
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| |
Collapse
|
9
|
Huai M, Pei M, Pan J, Zhu Y, Chen Y, Du P, Duan Y, Xu H, Ge W. Oral colon-targeted responsive alginate/hyaluronic acid-based hydrogel propels the application of infliximab in colitis. Int J Biol Macromol 2023; 249:125952. [PMID: 37494992 DOI: 10.1016/j.ijbiomac.2023.125952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/01/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
Currently, commercialized infliximab (IFX) has rapidly propelled the clinical treatment of IBD, however, its inherent attributes, such as off-target effects and rapid metabolism, severely limit practical applications. Moreover, high doses injection of IFX can result in IBD treatment failure, which may induce other side effects. In this study, an colon microenvironment-responsive hydrogel (AL/HA hydrogel), consisting of acid-resistant sodium alginate and colon-degraded and targeted hyaluronic acid, was constructed by simple Ca2+/Zn2+ cross-linking. The ion-mediated hydrogel exhibited the protective effect of gastrointestinal tract to avoid early drug leakage, while the inflammation environments showed well-controlled drug release and significant biodegradable behaviors. Additionally, oral hydrogel exhibited long-standing enteritis areas compared with normal mice. Therefore, hydrogel-assisted enteritis treatment has great potential in IBD as an oral agent. After that, IFX was packaged in hydrogel to fabricate a facile oral antibody delivery system to treat IBD. IFX-embedded hydrogel showed remarkable therapeutic effect on IBD compared with free IFX. Surprisingly, oral hydrogel below 7 times IFX achieve the same amount of IFX-infused treatment that will further help alleviate the drawbacks of IFX. Our work elaborated on the efficacy of oral AL/HA@IFX in IBD, providing a guarantee for the future of promoted clinical transformation.
Collapse
Affiliation(s)
- Manxiu Huai
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Mingliang Pei
- Central Laboratory, Department of Stomatology, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, PR China.
| | - Jiaxing Pan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Yun Zhu
- Department of Oral and Maxillofacial-Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiaotong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai 200011, PR China
| | - Yingwen Chen
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Peng Du
- Department of Colorectal Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, PR China
| | - Yanming Duan
- Department of Endoscopic Diagnosis and Treatment of Digestive Diseases, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China
| | - Huixiong Xu
- Central Laboratory, Department of Stomatology, Ultrasound Research and Education Institute, Shanghai Tenth People's Hospital, Tongji University School of Medicine, No. 301 Yan-chang-zhong Road, Shanghai 200072, PR China.
| | - Wensong Ge
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, No. 1665 Kongjiang Road, Shanghai 200092, PR China.
| |
Collapse
|
10
|
Brown LC, Bobo WV, Gall CA, Müller DJ, Bousman CA. Pharmacomicrobiomics of Antidepressants in Depression: A Systematic Review. J Pers Med 2023; 13:1086. [PMID: 37511699 PMCID: PMC10381387 DOI: 10.3390/jpm13071086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
This systematic review evaluated the animal and human evidence for pharmacomicrobiomics (PMx) interactions of antidepressant medications. Studies of gut microbiota effects on functional and behavioral effects of antidepressants in human and animal models were identified from PubMed up to December 2022. Risk of bias was assessed, and results are presented as a systematic review following PRISMA guidelines. A total of 28 (21 animal, 7 human) studies were included in the review. The reviewed papers converged on three themes: (1) Antidepressants can alter the composition and metabolites of gut microbiota, (2) gut microbiota can alter the bioavailability of certain antidepressants, and (3) gut microbiota may modulate the clinical or modeled mood modifying effects of antidepressants. The majority (n = 22) of studies had at least moderate levels of bias present. While strong evidence is still lacking to understand the clinical role of antidepressant PMx in human health, there is evidence for interactions among antidepressants, microbiota changes, microbiota metabolite changes, and behavior. Well-controlled studies of the mediating and moderating effects of baseline and treatment-emergent changes in microbiota on therapeutic and adverse responses to antidepressants are needed to better establish a potential role of PMx in personalizing antidepressant treatment selection and response prediction.
Collapse
Affiliation(s)
- Lisa C Brown
- Great Scott! Consulting LLC, New York, NY 11222, USA
| | - William V Bobo
- Department of Psychiatry & Psychology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Cory A Gall
- Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort 0028, South Africa
| | - Daniel J Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M6J 1H4, Canada
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Chad A Bousman
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Departments of Medical Genetics, Psychiatry, Physiology and Pharmacology, and Community Health Sciences, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
11
|
Yang S, Zhang B, Wang D, Hu S, Wang W, Liu C, Wu Z, Yang C. Role of GABAergic system in the comorbidity of pain and depression. Brain Res Bull 2023:110691. [PMID: 37331640 DOI: 10.1016/j.brainresbull.2023.110691] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 06/20/2023]
Abstract
Patients with chronic pain often suffer with depressive symptoms, and these two conditions can be aggravated by each other over time, leading to an increase in symptom intensity and duration. The comorbidity of pain and depression poses a significant challenge to human health and quality of life, as it is often difficult to diagnose early and treat effectively. Therefore, exploring the molecular mechanisms underlying the comorbidity of chronic pain and depression is crucial to identifying new therapeutic targets for treatment. However, understanding the pathogenesis of comorbidity requires examining interactions among multiple factors, which calls for an integrative perspective. While several studies have explored the role of the GABAergic system in pain and depression, fewer have examined its interactions with other systems involved in their comorbidity. Here, we review the evidence that the role of GABAergic system in the comorbidity of chronic pain and depression, as well as the interactions between the GABAergic system and other secondary systems involved in pain and depression comorbidity, providing a comprehensive understanding of their intricate interplay.
Collapse
Affiliation(s)
- Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Bingyuan Zhang
- Department of Anesthesiology, Taizhou People's Hospital Affiliated to Nanjing Medical University, No. 399 Hailing South Road, Taizhou City, 225300, Jiangsu Province, China
| | - Di Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Wenli Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Cunming Liu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China
| | - Zifeng Wu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029. China.
| |
Collapse
|
12
|
Rech TDST, Ribeiro EH, Castro ET, Alves AG, Strelow DN, Neto JSS, Braga AL, Brüning CA, Bortolatto CF. Antidepressant Potential of a Functionalized 3-Selanyl Benzo[ b]Furan Compound in Mice: Focus on the Serotonergic System. ACS Chem Neurosci 2023; 14:1181-1192. [PMID: 36853167 DOI: 10.1021/acschemneuro.2c00816] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
The present study investigated the antidepressant-like potential of a functionalized 3-selanyl benzo[b]furan (SeBZF) in male Swiss mice. To evaluate possible antidepressant-like actions, the compounds SeBZF1-5 (50 mg/kg, intragastric, i.g., route) were acutely screened in the tail suspension tests (TSTs). The compound 3-((4-methoxyphenyl)selanyl)-2-phenylbenzofuran (SeBZF3) was then selected. Dose-response and time-response curves revealed that SeBFZ3 exerts antidepressant-like effects in the TST (5-50 mg/kg) and forced swimming test (FST; 50 mg/kg). Additional tests demonstrated that pretreatment with receptor antagonists WAY100635 (5-HT1A; 0.1 mg/kg, subcutaneous route), ketanserin (5-HT2A/C; 1 mg/kg, intraperitoneal, i.p.), or ondansetron (5-HT3; 1 mg/kg, i.p.) blocked the SeBZF3 antidepressant-like effects (50 mg/kg) in the TST. In addition, the coadministration of subeffective doses of SeBZF3 (1 mg/kg, i.g.) and fluoxetine (a selective serotonin reuptake inhibitor; 5 mg/kg, i.p.) produced synergistic action. A high dose of SeBZF3 (300 mg/kg) did not produce oral acute toxicity. The present results provide evidence for the antidepressant-like action of SeBZF3 and its relative safety, as well as predict the possible interactions with the serotonergic system, aiding in the development of novel options to alleviate psychiatric disabilities.
Collapse
Affiliation(s)
- Taís da Silva Teixeira Rech
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Estela Hartwig Ribeiro
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Ediandra Tissot Castro
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Amália Gonçalves Alves
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Dianer Nornberg Strelow
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - José Sebastião Santos Neto
- Programa de Pós-graduação em Química (PPGQ), Laboratório de Síntese de Derivados de Selênio e Telúrio (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina, CEP 88040-900 Florianópolis, Santa Catarina, Brazil
| | - Antonio Luiz Braga
- Programa de Pós-graduação em Química (PPGQ), Laboratório de Síntese de Derivados de Selênio e Telúrio (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina, CEP 88040-900 Florianópolis, Santa Catarina, Brazil
| | - César Augusto Brüning
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| | - Cristiani Folharini Bortolatto
- Programa de Pós-graduação em Bioquímica e Bioprospecção, Laboratório de Bioquímica e Neurofarmacologia Molecular (LABIONEM), Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Universidade Federal de Pelotas (UFPel), CEP 96010-900 Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
13
|
Yang DF, Huang WC, Wu CW, Huang CY, Yang YCSH, Tung YT. Acute sleep deprivation exacerbates systemic inflammation and psychiatry disorders through gut microbiota dysbiosis and disruption of circadian rhythms. Microbiol Res 2023; 268:127292. [PMID: 36608535 DOI: 10.1016/j.micres.2022.127292] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/23/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Acute sleep deprivation (ASD) is often observed in shift workers and characterized by drowsiness and unrelenting exhaustion. The physiological and psychological effects of ASD include anxiety, depression, cognitive impairment, systemic inflammation, stress responses, and disruptions of gut microbiota. However, the mechanisms involved in the ASD-associated circadian dysregulations with regard to gut dysbiosis, systemic inflammation, physiological modulation, and psychiatry disorders remain unclear. The aim of this study was to investigate whether central nervous system disorders induced by ASD are related to inflammation, barrier dysfunction, and circadian dysregulation. We also assessed impacts on microbiota succession. Male C57BL/6 mice were randomly allocated to the control and sleep deprivation (SD) groups. Mice in the SD group were subjected to 72 h of paradoxical SD using the modified multiple-platform method for ASD induction (72 h rapid eye movement-SD). The effects of ASD on dietary consumption, behaviors, cytokines, microbiota, and functional genes were determined. The appetite of the SD group was significantly higher than that of the control group, but the body weight was significantly lower than that of the control group. The anxiety-like behaviors were found in the SD group. Alpha and beta diversity of microbiota showed significant decrease after ASD induction; the relative abundance of Candidatus_Arthromitus and Enterobacter was increased, whereas that abundance of Lactobacillus, Muribaculum, Monoglobus, Parasutterella, and others was decreased in the SD group. These effects were accompanied by reduction in fecal propionic acid. In the proximal colon, the SD group exhibited significantly higher inflammation (tumor necrosis factor-α [TNF-α]) and dysregulation of the circadian rhythms (brain and muscle ARNT-like 1 [BMAL1] and cryptochrome circadian regulator 1 [CRY1]) and tight junction genes (occludin [OCLN]) than the control group. Gut barrier dysfunction slightly increased the plasma concentration of lipopolysaccharide and significantly elevated TNF-α. Inflammatory signals might be transduced through the brain via TNF receptor superfamily member 1 A (TNFRSF1A), which significantly increased the levels of microglia activation marker (ionized calcium-binding adapter molecule 1 [IBA1]) and chemokine (intercellular adhesion molecule 1 [ICAM1]) in the cerebral cortex. The serotonin receptor (5-hydroxytryptamine 1A receptor [5-HT1AR]) was significantly downregulated in the hippocampus. In summary, 72 h of rapid eye movement-SD induced physiological and psychological stress, which led to disruption of the circadian rhythms and gut microbiota dysbiosis; these effects were related to decrement of short chain fatty acids, gut inflammation, and hyperpermeability. The microbiota may be utilized as preventive and therapeutic strategies for ASD from the perspectives of medicine and nutrition.
Collapse
Affiliation(s)
- Deng-Fa Yang
- Graduate Institute of Metabolism and Obesity Sciences, Taipei Medical University, Taipei 110, Taiwan.
| | - Wen-Ching Huang
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan.
| | - Changwei W Wu
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei 110, Taiwan; Brain and Consciousness Research Center, Shuang Ho Hospital-Taipei Medical University, New Taipei 235, Taiwan.
| | - Ching-Ying Huang
- Department of Food Science and Biotechnology, National Chung Hsing University, Taichung 402, Taiwan.
| | - Yu-Chen S H Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 110, Taiwan.
| | - Yu-Tang Tung
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 402, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan.
| |
Collapse
|
14
|
Yun SW, Park HS, Shin YJ, Ma X, Han MJ, Kim DH. Lactobacillus gasseri NK109 and Its Supplement Alleviate Cognitive Impairment in Mice by Modulating NF-κB Activation, BDNF Expression, and Gut Microbiota Composition. Nutrients 2023; 15:nu15030790. [PMID: 36771498 PMCID: PMC9921112 DOI: 10.3390/nu15030790] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 01/29/2023] [Indexed: 02/09/2023] Open
Abstract
Aging-related gut microbiota dysbiosis initiates gut inflammation and microbiota dysbiosis, which induce the occurrence of psychiatric disorders including dementia. The alleviation of gut microbiota dysbiosis by probiotics is suggested to be able to alleviate psychiatric disorders including cognitive impairment (CI). Therefore, to understand how probiotics could alleviate CI, we examined the effects of anti-inflammatory Lactobacillus gasseri NK109 and its supplement (NS, mixture of NK109 and soybean embryo ethanol extract) on cognitive function in aged (Ag), 5XFAD transgenic (Tg), or mildly cognition-impaired adult fecal microbiota (MCF)-transplanted mice. Oral administration of NK109 or NS decreased CI-like behaviors in Ag mice. Their treatments suppressed TNF-α and p16 expression and NF-κB-activated cell populations in the hippocampus and colon, while BDNF expression was induced. Moreover, they partially shifted the β-diversity of gut microbiota in Ag mice to those of young mice: they decreased Bifidobacteriaceae, Lactobacillaceae, and Helicobacteriaceae populations and increased Rikenellaceae and Prevotellaceae populations. Oral administration of NK109 or NS also reduced CI-like behaviors in Tg mice. Their treatments induced BDNF expression in the hippocampus, decreased hippocampal TNF-α and Aβ expression and hippocampal and colonic NF-κB-activated cell populations. NK109 and NS partially shifted the β-diversity of gut microbiota in Tg mice: they decreased Muribaculaceae and Rhodospiraceae populations and increased Helicobacteriaceae population. Oral administration of NK109 or NS decreased MCF transplantation-induced CI-like behaviors in mice. NK109 and NS increased hippocampal BDNF expression, while hippocampal and colonic TNF-α expression and NF-κB-activated cell populations decreased. These findings suggest that dementia can fluctuate the gut microbiota composition and NK109 and its supplement NS can alleviate CI with systemic inflammation by inducing BDNF expression and suppressing NF-κB activation and gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Soo-Won Yun
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee-Seo Park
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Xiaoyang Ma
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Myung Joo Han
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (M.J.H.); (D.-H.K.); Tel.: +82-2-961-0553 (M.J.H.); +82-2-961-0374 (D.-H.K.)
| | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Correspondence: (M.J.H.); (D.-H.K.); Tel.: +82-2-961-0553 (M.J.H.); +82-2-961-0374 (D.-H.K.)
| |
Collapse
|
15
|
Beneficial effects of buspirone in endothelin-1 induced stroke cachexia in rats. Mol Cell Biochem 2023:10.1007/s11010-022-04653-4. [PMID: 36609633 DOI: 10.1007/s11010-022-04653-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/30/2022] [Indexed: 01/09/2023]
Abstract
Stroke cachexia is associated with prolonged inflammation, muscle loss, poor prognosis, and early death of stroke patients. No particular treatment is available to cure the symptoms or disease. The present study aimed to evaluate the effect of a 5-HT1a agonist, buspirone on stroke cachexia. Wistar rats were injected with endothelin-1 to the bregma region of the brain to induce ischemic stroke followed by induction of cachexia after 4 days. Treatment with buspirone (3 mg/kg p.o) was given for 4 weeks after confirmation of cachexia in animals. Disease control animals exhibited decrease in wire hanging time and increase in foot fault numbers compared to normal animals. Disease control animals also showed weight loss, decrease in food intake, increased serum glucose and lipid profile along with high serum levels of inflammatory cytokines-TNF-α, IL-6 and decrease in weight of skeletal muscle and adipose tissues. Treatment with buspirone improves behavioural parameters along with increases food intake and body weight, decreased inflammatory cytokines IL-6 and TNF-α and serum glucose levels with increase in lipid profile. Buspirone also increased the weight of adipose tissue and maintain the skeletal muscle architecture and function as depicted in histopathological studies. Our study suggests that buspirone produces beneficial role in stroke cachexia by increasing body weight, food intake and adipose tissue depots by activating on 5-HT receptors. Buspirone decreases inflammatory markers in stroke cachexia although mechanism behind it was not fully understood. Buspirone decreases circulating blood glucose by stimulating glucose uptake in skeletal muscle via 5-HT receptors and maintained lipid profile. Buspirone was found to be effective in ameliorating cachectic conditions in stroke.
Collapse
|
16
|
Ge PY, Qu SY, Ni SJ, Yao ZY, Qi YY, Zhao X, Guo R, Yang NY, Zhang QC, Zhu HX. Berberine ameliorates depression-like behavior in CUMS mice by activating TPH1 and inhibiting IDO1-associated with tryptophan metabolism. Phytother Res 2023; 37:342-357. [PMID: 36089660 DOI: 10.1002/ptr.7616] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 06/24/2022] [Accepted: 08/20/2022] [Indexed: 01/19/2023]
Abstract
Berberine, which is a potential antidepressant, exhibits definite efficiency in modulating the gut microbiota. Depressive behaviors in mice induced using chronic unpredictable mild stress (CUMS) stimulation were evaluated by behavioral experiments. The markers of neurons and synapses were measured using immunohistochemical staining. An enzyme-linked immunosorbent assay was adopted to analyze serum inflammatory cytokines levels and neurotransmitters were evaluated by LC-MS/MS. Untargeted metabolomics of tryptophan metabolism was further performed using LC-MS/MS. The target enzymes of berberine involved in tryptophan metabolism were assayed using AutoDock and GRMACS softwares. Then, antibiotics was utilized to induce intestinal flora disturbance. Berberine improved the depressive behaviors of mice in a microbiota-dependent manner. Increased neurons and synaptic plasticity were observed following berberine treatment. Meanwhile, berberine decreased serum levels of TNF-α, IL-1β, and IL-4 and increased levels of IL-10. Moreover, berberine induced retraction of the abnormal neurotransmitters and metabolomics assays revealed that berberine promoted tryptophan biotransformation into serotonin and inhibited the kynurenine metabolism pathway, which was attributed to the potential agonist of tryptophan 5-hydroxylase 1 (TPH1) and inhibitor of indoleamine 2,3-dioxygenase 1 (IDO1). In conclusion, berberine improves depressive symptoms in CUMS-stimulated mice by targeting both TPH1 and IDO1, which are involved in tryptophan metabolism.
Collapse
Affiliation(s)
- Ping-Yuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shu-Yue Qu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sai-Jia Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zeng-Ying Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi-Yu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Nian-Yun Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi-Chun Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua-Xu Zhu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
17
|
Ge L, Liu S, Li S, Yang J, Hu G, Xu C, Song W. Psychological stress in inflammatory bowel disease: Psychoneuroimmunological insights into bidirectional gut–brain communications. Front Immunol 2022; 13:1016578. [PMID: 36275694 PMCID: PMC9583867 DOI: 10.3389/fimmu.2022.1016578] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), mainly including ulcerative colitis (UC) and Crohn’s disease (CD), is an autoimmune gastrointestinal disease characterized by chronic inflammation and frequent recurrence. Accumulating evidence has confirmed that chronic psychological stress is considered to trigger IBD deterioration and relapse. Moreover, studies have demonstrated that patients with IBD have a higher risk of developing symptoms of anxiety and depression than healthy individuals. However, the underlying mechanism of the link between psychological stress and IBD remains poorly understood. This review used a psychoneuroimmunology perspective to assess possible neuro-visceral integration, immune modulation, and crucial intestinal microbiome changes in IBD. Furthermore, the bidirectionality of the brain–gut axis was emphasized in the context, indicating that IBD pathophysiology increases the inflammatory response in the central nervous system and further contributes to anxiety- and depression-like behavioral comorbidities. This information will help accurately characterize the link between psychological stress and IBD disease activity. Additionally, the clinical application of functional brain imaging, microbiota-targeted treatment, psychotherapy and antidepressants should be considered during the treatment and diagnosis of IBD with behavioral comorbidities. This review elucidates the significance of more high-quality research combined with large clinical sample sizes and multiple diagnostic methods and psychotherapy, which may help to achieve personalized therapeutic strategies for IBD patients based on stress relief.
Collapse
Affiliation(s)
- Li Ge
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Shuman Liu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Sha Li
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Yang
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Guangran Hu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Changqing Xu
- Department of Gastroenterology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Wengang Song
- Shandong Provincial Key Laboratory for Rheumatic Disease and Translational Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wengang Song,
| |
Collapse
|
18
|
Buspirone Ameliorates Colon Inflammation in TNBS-Induced Rat Acute Colitis: The Involvement of TLR4/NF-kB Pathway. Drug Res (Stuttg) 2022; 72:449-456. [PMID: 35820429 DOI: 10.1055/a-1855-1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Inflammatory bowel disease (IBD) is an inflammatory situation involving the whole digestive system. This illness includes ulcerative colitis and Crohn's disease. According to scientific research, the immune system plays an essential part in developing this disease. Recently, buspirone has been discovered to have anti-inflammatory properties. As a result, this research aims to see if buspirone provides anti-inflammatory effects in a rat model of TNBS-induced colitis. Control, TNBS, dexamethasone (2 mg/kg), and buspirone (5, 10, and 20 mg/kg) were randomly given to six groups of 36 male Wistar rats. Colitis was induced by intrarectal instillation of TNBS in all research groups except the control group, and rats were meliorated with dexamethasone and buspirone. Macroscopic and microscopic lesions appeared after colitis induction, while therapy with dexamethasone and buspirone significantly improved the lesions. TLR4 and pNF-κB expression were also enhanced during colitis induction. On the other hand, the administration of dexamethasone or buspirone resulted in a considerable reduction in their expression. Tissue TNF-α and MPO activity were enhanced after induction of colitis in terms of biochemical variables; however, administration of dexamethasone or buspirone reduced TNF-α and MPO activity. Eventually, in an animal model of severe colitis, buspirone displayed anti-inflammatory characteristics via lowering the TLR4/NF-ĸB signaling pathway's activity in an animal model of acute colitis.
Collapse
|
19
|
Sonali S, Ray B, Ahmed Tousif H, Rathipriya AG, Sunanda T, Mahalakshmi AM, Rungratanawanich W, Essa MM, Qoronfleh MW, Chidambaram SB, Song BJ. Mechanistic Insights into the Link between Gut Dysbiosis and Major Depression: An Extensive Review. Cells 2022; 11:cells11081362. [PMID: 35456041 PMCID: PMC9030021 DOI: 10.3390/cells11081362] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
Depression is a highly common mental disorder, which is often multifactorial with sex, genetic, environmental, and/or psychological causes. Recent advancements in biomedical research have demonstrated a clear correlation between gut dysbiosis (GD) or gut microbial dysbiosis and the development of anxiety or depressive behaviors. The gut microbiome communicates with the brain through the neural, immune, and metabolic pathways, either directly (via vagal nerves) or indirectly (via gut- and microbial-derived metabolites as well as gut hormones and endocrine peptides, including peptide YY, pancreatic polypeptide, neuropeptide Y, cholecystokinin, corticotropin-releasing factor, glucagon-like peptide, oxytocin, and ghrelin). Maintaining healthy gut microbiota (GM) is now being recognized as important for brain health through the use of probiotics, prebiotics, synbiotics, fecal microbial transplantation (FMT), etc. A few approaches exert antidepressant effects via restoring GM and hypothalamus–pituitary–adrenal (HPA) axis functions. In this review, we have summarized the etiopathogenic link between gut dysbiosis and depression with preclinical and clinical evidence. In addition, we have collated information on the recent therapies and supplements, such as probiotics, prebiotics, short-chain fatty acids, and vitamin B12, omega-3 fatty acids, etc., which target the gut–brain axis (GBA) for the effective management of depressive behavior and anxiety.
Collapse
Affiliation(s)
- Sharma Sonali
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Bipul Ray
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Hediyal Ahmed Tousif
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | | | - Tuladhar Sunanda
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Arehally M. Mahalakshmi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
| | - Wiramon Rungratanawanich
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
| | - Musthafa Mohamed Essa
- Department of Food Science and Nutrition, CAMS, Sultan Qaboos University, Muscat 123, Oman;
- Aging and Dementia Research Group, Sultan Qaboos University, Muscat 123, Oman
| | - M. Walid Qoronfleh
- Q3CG Research Institute (QRI), Research and Policy Division, 7227 Rachel Drive, Ypsilant, MI 48917, USA;
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India; (S.S.); (B.R.); (H.A.T.); (T.S.); (A.M.M.)
- Centre for Experimental Pharmacology and Toxicology, Central Animal Facility, JSS Academy of Higher Education & Research, Mysuru 570015, Karnataka, India
- Correspondence: (S.B.C.); (B.-J.S.)
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, MD 20892, USA;
- Correspondence: (S.B.C.); (B.-J.S.)
| |
Collapse
|
20
|
Santana IGC, Almeida LDS, Moreira LKDS, de Carvalho FS, Menegatti R, da Rocha ALB, Mazurok TA, Vaz BG, Lião LM, Brito AF, Fajemiroye JO, Costa EA, Carvalho PG. Structure-activity relationship of three new piperazine derivates with anxiolytic-like and antidepressant-like effects. Can J Physiol Pharmacol 2022; 100:521-533. [PMID: 35395172 DOI: 10.1139/cjpp-2021-0729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Anxiety and depression are common mental disorders affecting millions of people worldwide. Unsatisfactory clinical outcomes with the use of the available pharmacological interventions among some patients demand newer drugs with proven efficacy, safety, and tolerability profile. In this study, the LQFM211, LQFM213, and LQFM214 were designed from the piperazine scaffold and administered orally in mice. These mice were later evaluated in the open field, elevated plus maze, and forced swimming tests to assess the exploratory, anxiolytic, and antidepressant-like activities, respectively. The mechanism of action of these new derivatives was evaluated using Flumazenil (benzodiazepine antagonist) and WAY100635 (5-HT1A receptor antagonist). Unlike LQFM214, the LQFM211 and LQFM213 elicited anxiolytic and antidepressant-like effects. The blockade of the effect of LQFM213 by WAY100635 suggests the involvement of the serotonergic pathway. Keywords: anxiety, behavioral pharmacology, depression, medicinal chemistry.
Collapse
Affiliation(s)
| | | | | | | | - Ricardo Menegatti
- Universidade Federal de Goias, 67824, Faculty of Pharmacy, Goiania, GO, Brazil;
| | | | | | - Boniek Gontijo Vaz
- Universidade Federal de Goias, 67824, Chemistry Institute, Goiania, GO, Brazil;
| | - Luciano Morais Lião
- Universidade Federal de Goias, 67824, Chemistry Institute, Goiania, GO, Brazil;
| | - Adriane Ferreira Brito
- Goiânia Flamboyant Campus, Goiânia, Goiás, Brazil.,Universidade Federal de Goias, 67824, Department of Pharmacology, Goiania, GO, Brazil;
| | - James O Fajemiroye
- Universidade Federal de Goias, 67824, Department of Pharmacology, Goiania, GO, Brazil;
| | - E A Costa
- Universidade Federal de Goias, 67824, Goiania, GO, Brazil;
| | | |
Collapse
|
21
|
Babaei F, Mirzababaei M, Mohammadi G, Dargahi L, Nassiri-Asl M. Saccharomyces boulardii attenuates lipopolysaccharide-induced anxiety-like behaviors in rats. Neurosci Lett 2022; 778:136600. [DOI: 10.1016/j.neulet.2022.136600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/10/2022] [Accepted: 03/26/2022] [Indexed: 12/22/2022]
|
22
|
Lu Q, Xiang H, Zhu H, Chen Y, Lu X, Huang C. Intranasal lipopolysaccharide administration prevents chronic stress-induced depression- and anxiety-like behaviors in mice. Neuropharmacology 2021; 200:108816. [PMID: 34599975 DOI: 10.1016/j.neuropharm.2021.108816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/24/2021] [Accepted: 09/26/2021] [Indexed: 02/06/2023]
Abstract
We recently reported that intraperitoneal injection of a low dose of lipopolysaccharide (LPS) prevents chronic stress-induced depression-like behaviors in mice. In this study, we reported that a single intranasal LPS administration (10 μg/mouse) one day prior to stress exposure produced prophylactic effects on chronic social defeat stress (CSDS)-induced depression-like behaviors, which was indicated by the reduction in social interaction time in the social interaction test and the decrease in immobility time in the tail suspension test and forced swimming test. The single intranasal LPS administration prior to stress exposure was also found to prevent CSDS-induced anxiety-like behaviors, including prevention of CSDS-induced decrease in the time spent in open arms in the elevated plus maze test, decrease in the time spent in lit side in the light-dark test, and decrease in the time spent in central regions in the open field test, along with no changes in locomotor activity. Further analysis showed that the single intranasal LPS administration one day prior to stress exposure prevented CSDS-induced increase in levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and IL-1β mRNA in the hippocampus and prefrontal cortex. Inhibition of innate immune stimulation by minocycline pretreatment not only abrogated the preventive effect of intranasal LPS administration on CSDS-induced depression- and anxiety-like behaviors, but also abrogated the preventive effect of intranasal LPS administration on CSDS-induced neuroinflammatory responses in the hippocampus and prefrontal cortex. These results demonstrate that intranasal administration of innate immune stimulants could be a potential approach for the prevention of depression and anxiety.
Collapse
Affiliation(s)
- Qun Lu
- Department of Pharmacy, Nantong Third Hospital Affiliated to Nantong University, #60 Middle Qingnian Road, Nantong, 226006, Jiangsu, China
| | - Haitao Xiang
- Department of Neurosurgery, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, #118 Wansheng Street, Suzhou, 215028, Jiangsu, China
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Yifan Chen
- Department of Medical Imaging, School of Medicine, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, #19 Qixiu Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
23
|
Pádua-Reis M, Nôga DA, Tort ABL, Blunder M. Diazepam causes sedative rather than anxiolytic effects in C57BL/6J mice. Sci Rep 2021; 11:9335. [PMID: 33927265 PMCID: PMC8085115 DOI: 10.1038/s41598-021-88599-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/12/2021] [Indexed: 02/08/2023] Open
Abstract
Diazepam has been broadly accepted as an anxiolytic drug and is often used as a positive control in behavioral experiments with mice. However, as opposed to this general assumption, the effect of diazepam on mouse behavior can be considered rather controversial from an evidence point of view. Here we revisit this issue by studying the effect of diazepam on a benchmark task in the preclinical anxiety literature: the elevated plus maze. We evaluated the minute-by-minute time-course of the diazepam effect along the 10 min of the task at three different doses (0.5, 1 and 2 mg/kg i.p. 30 min before the task) in female and male C57BL/6J mice. Furthermore, we contrasted the effects of diazepam with those of a selective serotoninergic reuptake inhibitor (paroxetine, 10 mg/kg i.p. 1 h before the task). Diazepam had no anxiolytic effect at any of the tested doses, and, at the highest dose, it impaired locomotor activity, likely due to sedation. Noteworthy, our results held true when examining male and female mice separately, when only examining the first 5 min of the task, and when animals were subjected to one hour of restrain-induced stress prior to diazepam treatment. In contrast, paroxetine significantly reduced anxiety-like behavior without inducing sedative effects. Our results therefore suggest that preclinical studies for screening new anxiolytic drugs should be cautious with diazepam use as a potential positive control.
Collapse
Affiliation(s)
- Marina Pádua-Reis
- Behavioral Neurophysiology, Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | - Diana Aline Nôga
- Behavioral Neurophysiology, Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
| | - Adriano B L Tort
- Behavioral Neurophysiology, Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden
- Brain Institute, Federal University of Rio Grande do Norte, Natal, RN, 59056, Brazil
| | - Martina Blunder
- Behavioral Neurophysiology, Department of Neuroscience, Uppsala University, 75124, Uppsala, Sweden.
| |
Collapse
|