1
|
Gupta A, Mishra SK, Lascelles BDX. Emerging evidence of artemin/GFRα3 signaling in musculoskeletal pain. Osteoarthritis Cartilage 2024:S1063-4584(24)01404-3. [PMID: 39374825 DOI: 10.1016/j.joca.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/09/2024]
Abstract
Chronic musculoskeletal pain is highly prevalent and poses a significant personal, societal, and economic burden. Management of chronic musculoskeletal pain remains a challenge. Long-term use of common analgesic medications such as nonsteroidal anti-inflammatory drugs and opioids is associated with adverse events, and in the case of opioids, drug addiction. Additionally, many individuals do not experience sufficient pain relief with these therapeutic approaches. Thus, there is an urgent need to develop clinically efficacious and safe therapeutics for musculoskeletal pain. Recent advances in our understanding of musculoskeletal pain neurobiology have helped identify the role of neurotrophic factors, specifically, the glial cell line-derived neurotrophic factor family of ligands (GFL) and their associated signaling pathways. This review outlines our current understanding of the GFL signaling systems, discusses their role in inflammatory and chronic musculoskeletal pain and sensitivity, and comments on the analgesic therapeutic potential of targeting the GFL signaling system.
Collapse
Affiliation(s)
- Ankita Gupta
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Santosh K Mishra
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - B Duncan X Lascelles
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, USA; Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, USA; Center for Translational Pain Research, Department of Anesthesiology, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Rowlison de Ortiz A, Belda B, Hash J, Enomoto M, Robertson J, Lascelles BDX. Initial exploration of the discriminatory ability of the PetPace collar to detect differences in activity and physiological variables between healthy and osteoarthritic dogs. FRONTIERS IN PAIN RESEARCH 2022; 3:949877. [PMID: 36147035 PMCID: PMC9485802 DOI: 10.3389/fpain.2022.949877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Background Accelerometry has been used to evaluate activity in dogs with osteoarthritis (OA) pain, especially in relation to effect of treatment; however no studies have compared accelerometry-measured activity in dogs with OA-pain and healthy dogs. The aims of this study were to (1) compare activity output from the PetPace collar with the validated Actical monitor and (2) determine if PetPace collar outputs (overall activity, activity levels, body position, and vital signs) differed between healthy dogs and dogs with OA-pain. Methods This was an observational, non-interventional study in healthy dogs and dogs with OA-pain. All dogs were outfitted with the PetPace collar and the Actical monitor simultaneously for 14 days. Output from these devices was compared (correlations), and output from the PetPace device was used to explore differences between groups across the activity and vital sign outputs (including calculated heart rate variability indices). Results There was moderate correlation between the PetPace collar and Actical monitor output (R2 = 0.56, p < 0.001). Using data generated by the PetPace collar, OA-pain dogs had lower overall activity counts and spent less time standing than healthy dogs. Healthy dogs spent more time at higher activity levels than OA-pain dogs. Certain heart rate variability indices in OA-pain dogs were lower than in healthy dogs. Conclusions and clinical relevance The results of this study suggest that the PetPace collar can detect differences between healthy dogs and those with OA-pain, and that OA-pain negatively impacts overall activity levels in dogs, and especially higher intensity activity.
Collapse
Affiliation(s)
- Avery Rowlison de Ortiz
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Office of Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Beatriz Belda
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Jon Hash
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Masataka Enomoto
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - James Robertson
- Office of Research, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - B. Duncan X. Lascelles
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Pain Research and Education Center, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Thurston Arthritis Center, University of North Carolina (UNC) School of Medicine, Chapel Hill, NC, United States
- Department of Anesthesiology, Center for Translational Pain Research, Duke University, Durham, NC, United States
- *Correspondence: B. Duncan X. Lascelles
| |
Collapse
|
3
|
Minnema L, Gupta A, Mishra SK, Lascelles BDX. Investigating the Role of Artemin and Its Cognate Receptor, GFRα3, in Osteoarthritis Pain. Front Neurosci 2022; 16:738976. [PMID: 35153665 PMCID: PMC8829392 DOI: 10.3389/fnins.2022.738976] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) associated pain (OA-pain) is a significant global problem. OA-pain limits limb use and mobility and is associated with widespread sensitivity. Therapeutic options are limited, and the available options are often associated with adverse effects. The lack of therapeutic options is partly due to a lack of understanding of clinically relevant underlying neural mechanisms of OA-pain. In previous work in naturally occurring OA-pain in dogs, we identified potential signaling molecules (artemin/GFRα3) that were upregulated. Here, we use multiple approaches, including cellular, mouse genetic, immunological suppression in a mouse model of OA, and clinically relevant measures of sensitivity and limb use to explore the functional role of artemin/GFRα3 signaling in OA-pain. We found the monoiodoacetate (MIA)-induced OA-pain in mice is associated with decreased limb use and hypersensitivity. Exogenous artemin induces mechanical, heat, and cold hypersensitivity, and systemic intraperitoneal anti-artemin monoclonal antibody administration reverses this hypersensitivity and restores limb use in mice with MIA-induced OA-pain. An artemin receptor GFRα3 expression is increased in sensory neurons in the MIA model. Our results provide a molecular basis of arthritis pain linked with artemin/GFRα3 signaling and indicate that further work is warranted to investigate the neuronal plasticity and the pathways that drive pain in OA.
Collapse
Affiliation(s)
- Laura Minnema
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Ankita Gupta
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
| | - Santosh K. Mishra
- Department of Molecular and Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, United States
- *Correspondence: Santosh K. Mishra,
| | - B. Duncan X. Lascelles
- Translational Research in Pain Program, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States
- Comparative Pain Research and Education Center, North Carolina State University, Raleigh, NC, United States
- Thurston Arthritis Center, UNC School of Medicine, Chapel Hill, NC, United States
- B. Duncan X. Lascelles,
| |
Collapse
|