1
|
Shukla V, Wang H, Varticovski L, Baek S, Wang R, Wu X, Echtenkamp F, Villa-Hernandez F, Prothro KP, Gara SK, Zhang MR, Shiffka S, Raziuddin R, Neckers LM, Linehan WM, Chen H, Hager GL, Schrump DS. Genome-Wide Analysis Identifies Nuclear Factor 1C as a Novel Transcription Factor and Potential Therapeutic Target in SCLC. J Thorac Oncol 2024; 19:1201-1217. [PMID: 38583771 DOI: 10.1016/j.jtho.2024.03.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/09/2024]
Abstract
INTRODUCTION Recent insights regarding mechanisms mediating stemness, heterogeneity, and metastatic potential of lung cancers have yet to be fully translated to effective regimens for the treatment of these malignancies. This study sought to identify novel targets for lung cancer therapy. METHODS Transcriptomes and DNA methylomes of 14 SCLC and 10 NSCLC lines were compared with normal human small airway epithelial cells (SAECs) and induced pluripotent stem cell (iPSC) clones derived from SAEC. SCLC lines, lung iPSC (Lu-iPSC), and SAEC were further evaluated by DNase I hypersensitive site sequencing (DHS-seq). Changes in chromatin accessibility and depths of transcription factor (TF) footprints were quantified using Bivariate analysis of Genomic Footprint. Standard techniques were used to evaluate growth, tumorigenicity, and changes in transcriptomes and glucose metabolism of SCLC cells after NFIC knockdown and to evaluate NFIC expression in SCLC cells after exposure to BET inhibitors. RESULTS Considerable commonality of transcriptomes and DNA methylomes was observed between Lu-iPSC and SCLC; however, this analysis was uninformative regarding pathways unique to lung cancer. Linking results of DHS-seq to RNA sequencing enabled identification of networks not previously associated with SCLC. When combined with footprint depth, NFIC, a transcription factor not previously associated with SCLC, had the highest score of occupancy at open chromatin sites. Knockdown of NFIC impaired glucose metabolism, decreased stemness, and inhibited growth of SCLC cells in vitro and in vivo. ChIP-seq analysis identified numerous sites occupied by BRD4 in the NFIC promoter region. Knockdown of BRD4 or treatment with Bromodomain and extra-terminal domain (BET) inhibitors (BETis) markedly reduced NFIC expression in SCLC cells and SCLC PDX models. Approximately 8% of genes down-regulated by BETi treatment were repressed by NFIC knockdown in SCLC, whereas 34% of genes repressed after NFIC knockdown were also down-regulated in SCLC cells after BETi treatment. CONCLUSIONS NFIC is a key TF and possible mediator of transcriptional regulation by BET family proteins in SCLC. Our findings highlight the potential of genome-wide chromatin accessibility analysis for elucidating mechanisms of pulmonary carcinogenesis and identifying novel targets for lung cancer therapy.
Collapse
Affiliation(s)
- Vivek Shukla
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Present Address: Division of Nonclinical Sciences (DNCS), FDA, Silver Spring, Maryland
| | - Haitao Wang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lyuba Varticovski
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ruihong Wang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xinwei Wu
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Frank Echtenkamp
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Frank Villa-Hernandez
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Katherine P Prothro
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sudheer K Gara
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mary R Zhang
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie Shiffka
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Razi Raziuddin
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Leonard M Neckers
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Haobin Chen
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; Present Address: Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David S Schrump
- Thoracic Epigenetics Section, Thoracic Surgery Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
2
|
Wang Z, Ying Y, Wang M, Chen Q, Wang Y, Yu X, He W, Li J, Zeng S, Xu C. Comprehensive identification of onco-exaptation events in bladder cancer cell lines revealed L1PA2-SYT1 as a prognosis-relevant event. iScience 2023; 26:108482. [PMID: 38058305 PMCID: PMC10696462 DOI: 10.1016/j.isci.2023.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 10/17/2023] [Accepted: 11/15/2023] [Indexed: 12/08/2023] Open
Abstract
Transposable elements (TEs) can provide ectopic promoters to drive the expression of oncogenes in cancer, a mechanism known as onco-exaptation. Onco-exaptation events have been extensively identified in various cancers, with bladder cancer showing a high frequency of onco-exaptation events (77%). However, the effect of most of these events in bladder cancer remains unclear. This study identified 44 onco-exaptation events in 44 bladder cancer cell lines in 137 RNA-seq datasets from six publicly available cohorts, with L1PA2 contributing the most events. L1PA2-SYT1, L1PA2-MET, and L1PA2-XCL1 had the highest frequency not only in cell lines but also in TCGA-BLCA samples. L1PA2-SYT1 showed significant tumor specificity and was found to be activated by CpG island demethylation in its promoter. The upregulation of L1PA2-SYT1 enhances the in vitro invasion of bladder cancer and is an independent risk factor for patient's overall survival, suggesting L1PA2-SYT1 being an important event that promotes the development of bladder cancer.
Collapse
Affiliation(s)
- Ziwei Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yidie Ying
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Maoyu Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Qing Chen
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Yi Wang
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Xufeng Yu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wei He
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Jing Li
- Department of Bioinformatics, Center for Translational Medicine, Naval Medical University, Shanghai 200433, China
- Shanghai Key Laboratory of Cell Engineering, Shanghai, China
| | - Shuxiong Zeng
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Chuanliang Xu
- Department of Urology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
3
|
Jiang JC, Rothnagel JA, Upton KR. Widespread Exaptation of L1 Transposons for Transcription Factor Binding in Breast Cancer. Int J Mol Sci 2021; 22:5625. [PMID: 34070697 PMCID: PMC8199441 DOI: 10.3390/ijms22115625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022] Open
Abstract
L1 transposons occupy 17% of the human genome and are widely exapted for the regulation of human genes, particularly in breast cancer, where we have previously shown abundant cancer-specific transcription factor (TF) binding sites within the L1PA2 subfamily. In the current study, we performed a comprehensive analysis of TF binding activities in primate-specific L1 subfamilies and identified pervasive exaptation events amongst these evolutionarily related L1 transposons. By motif scanning, we predicted diverse and abundant TF binding potentials within the L1 transposons. We confirmed substantial TF binding activities in the L1 subfamilies using TF binding sites consolidated from an extensive collection of publicly available ChIP-seq datasets. Young L1 subfamilies (L1HS, L1PA2 and L1PA3) contributed abundant TF binding sites in MCF7 cells, primarily via their 5' UTR. This is expected as the L1 5' UTR hosts cis-regulatory elements that are crucial for L1 replication and mobilisation. Interestingly, the ancient L1 subfamilies, where 5' truncation was common, displayed comparable TF binding capacity through their 3' ends, suggesting an alternative exaptation mechanism in L1 transposons that was previously unnoticed. Overall, primate-specific L1 transposons were extensively exapted for TF binding in MCF7 breast cancer cells and are likely prominent genetic players modulating breast cancer transcriptional regulation.
Collapse
Affiliation(s)
| | | | - Kyle R. Upton
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia; (J.-C.J.); (J.A.R.)
| |
Collapse
|