1
|
Rott P, Grinstead S, Dallot S, Foster ZSL, Daugrois JH, Fernandez E, Kaye CJ, Hendrickson L, Hu X, Adhikari B, Malapi M, Grünwald NJ, Roumagnac P, Mollov D. Genetic Diversity, Evolution, and Diagnosis of Sugarcane Yellow Leaf Virus from 19 Sugarcane-Producing Locations Worldwide. PLANT DISEASE 2023; 107:3437-3447. [PMID: 37079008 DOI: 10.1094/pdis-10-22-2405-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Sugarcane yellow leaf virus (SCYLV), the causal agent of yellow leaf, has been reported in an increasing number of sugarcane-growing locations since its first report in the 1990s in Brazil, Florida, and Hawaii. In this study, the genetic diversity of SCYLV was investigated using the genome coding sequence (5,561 to 5,612 nt) of 109 virus isolates from 19 geographical locations, including 65 new isolates from 16 geographical regions worldwide. These isolates were distributed in three major phylogenetic lineages (BRA, CUB, and REU), except for one isolate from Guatemala. Twenty-two recombination events were identified among the 109 isolates of SCYLV, thus confirming that recombination was a significant driving force in the genetic diversity and evolution of this virus. No temporal signal was found in the genomic sequence dataset, most likely because of the short temporal window of the 109 SCYLV isolates (1998 to 2020). Among 27 primers reported in the literature for the detection of the virus by RT-PCR, none matched 100% with all 109 SCYLV sequences, suggesting that the use of some primer pairs may not result in the detection of all virus isolates. Primers YLS111/YLS462, which were the first primer pair used by numerous research organizations to detect the virus by RT-PCR, failed to detect isolates belonging to the CUB lineage. In contrast, primer pair ScYLVf1/ScYLVr1 efficiently detected isolates of all three lineages. Continuous pursuit of knowledge of SCYLV genetic variability is therefore critical for effective diagnosis of yellow leaf, especially in virus-infected and mainly asymptomatic sugarcane plants.
Collapse
Affiliation(s)
- Philippe Rott
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Sam Grinstead
- National Germplasm Resources Laboratory, USDA-ARS, Beltsville, MD 20705, U.S.A
| | - Sylvie Dallot
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Zachary S L Foster
- Horticultural Crops Disease and Pest Management Research Unit, USDA-ARS, Corvallis, OR 97330, U.S.A
| | - Jean H Daugrois
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Emmanuel Fernandez
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | | | | - Xiaojun Hu
- Plant Germplasm Quarantine Program, USDA-APHIS, Beltsville, MD 20705, U.S.A
| | - Bishwo Adhikari
- Plant Germplasm Quarantine Program, USDA-APHIS, Beltsville, MD 20705, U.S.A
| | - Martha Malapi
- Plant Germplasm Quarantine Program, USDA-APHIS, Beltsville, MD 20705, U.S.A
| | - Niklaus J Grünwald
- Horticultural Crops Disease and Pest Management Research Unit, USDA-ARS, Corvallis, OR 97330, U.S.A
| | - Philippe Roumagnac
- CIRAD, UMR PHIM, 34398 Montpellier, France
- PHIM Plant Health Institute, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Dimitre Mollov
- Horticultural Crops Disease and Pest Management Research Unit, USDA-ARS, Corvallis, OR 97330, U.S.A
| |
Collapse
|
2
|
Comparative Analysis of Tomato Brown Rugose Fruit Virus Isolates Shows Limited Genetic Diversity. Viruses 2022; 14:v14122816. [PMID: 36560820 PMCID: PMC9784425 DOI: 10.3390/v14122816] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Tomato is an important vegetable in the United States and around the world. Recently, tomato brown rugose fruit virus (ToBRFV), an emerging tobamovirus, has impacted tomato crops worldwide and can result in fruit loss. ToBRFV causes severe symptoms, such as mosaic, puckering, and necrotic lesions on leaves; other symptoms include brown rugose and marbling on fruits. More importantly, ToBRFV can overcome resistance in tomato cultivars carrying the Tm-22 locus. In this study, we recovered ToBRFV sequences from tomato seeds, leaves, and fruits from the U.S., Mexico, and Peru. Samples were pre-screened using a real-time RT-PCR assay prior to high-throughput sequencing. Virus draft genomes from 22 samples were assembled and analyzed against more than 120 publicly available genomes. Overall, most sequenced isolates were similar to each other and did not form a distinct population. Phylogenetic analysis revealed three clades within the ToBRFV population. Most of the isolates (95%) clustered in clade 3. Genetic analysis revealed differentiation between the three clades indicating minor divergence occurring. Overall, pairwise identity showed limited genetic diversity among the isolates in this study with worldwide isolates, with a pairwise identity ranging from 99.36% and 99.97%. The overall population is undergoing high gene flow and population expansion with strong negative selection pressure at all ToBRFV genes. Based on the results of this study, it is likely that the limited ToBRFV diversity is associated with the rapid movement and eradication of ToBRFV-infected material between countries.
Collapse
|
3
|
Saleem A, Ali Z, Yeh SD, Saeed W, Binat Imdad A, Akbar MF, Goodman RE, Naseem S. Genetic variability and evolutionary dynamics of atypical Papaya ringspot virus infecting Papaya. PLoS One 2021; 16:e0258298. [PMID: 34637470 PMCID: PMC8509892 DOI: 10.1371/journal.pone.0258298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
Papaya ringspot virus biotype-P is a detrimental pathogen of economically important papaya and cucurbits worldwide. The mutation prone feature of this virus perhaps accounts for its geographical dissemination. In this study, investigations of the atypical PRSV-P strain was conducted based on phylogenetic, recombination and genetic differentiation analyses considering of it's likely spread across India and Bangladesh. Full length genomic sequences of 38 PRSV isolates and 35 CP gene sequences were subjected to recombination analysis. A total of 61 recombination events were detected in aligned complete PRSV genome sequences. 3 events were detected in complete genome of PRSV strain PK whereas one was in its CP gene sequence. The PRSV-PK appeared to be recombinant of a major parent from Bangladesh. However, the genetic differentiation based on full length genomic sequences revealed less frequent gene flow between virus PRSV-PK and the population from America, India, Colombia, other Asian Countries and Australia. Whereas, frequent gene flow exists between Pakistan and Bangladesh virus populations. These results provided evidence correlating geographical position and genetic distances. We speculate that the genetic variations and evolutionary dynamics of this virus may challenge the resistance developed in papaya against PRSV and give rise to virus lineage because of its atypical emergence where geographic spread is already occurring.
Collapse
Affiliation(s)
- Anam Saleem
- Department of Biosciences, Plant Biotechnology and Molecular Pharming Lab, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Zahid Ali
- Department of Biosciences, Plant Biotechnology and Molecular Pharming Lab, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Wajeeha Saeed
- Department of Biosciences, Plant Biotechnology and Molecular Pharming Lab, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Amna Binat Imdad
- Department of Biosciences, Plant Biotechnology and Molecular Pharming Lab, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Muhammad Faheem Akbar
- Department of Agriculture and Agribusiness Management, University of Karachi, Karachi, Pakistan
| | - Richard E. Goodman
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Saadia Naseem
- Department of Biosciences, Plant Biotechnology and Molecular Pharming Lab, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| |
Collapse
|