1
|
Ghasemizadeh A, Wan L, Hirose A, Diep J, Ewert KK, Safinya CR. A Library of Custom PEG-Lipids reveals a Double-PEG-Lipid with Drastically Enhanced Paclitaxel Solubility and Human Cancer Cell Cytotoxicity when used in Fluid Micellar Nanoparticles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.606138. [PMID: 39131387 PMCID: PMC11312575 DOI: 10.1101/2024.08.01.606138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Paclitaxel (PTX) is one of the most widely utilized chemotherapeutics globally. However, the extremely poor water solubility of paclitaxel necessitates a mechanism of delivery within blood. Fluid lipid PTX nanocarriers (lipids in the chain-melted state) show promise as PTX delivery vectors, but remain limited by their solubility of PTX within the membrane. To improve pharmacokinetics, membrane surfaces are typically coated with polyethylene glycol (PEG). Recent work has demonstrated the generation of a population of micelles within fluid lipid formulations containing a 2kDa PEG-lipid at a 10 mol% ratio. Driven by the positive curvature of the PEG-lipid (i.e. area of head group > area of tails), micelle-containing formulations were found to exhibit significantly higher uptake in cancer cells, cytotoxicity, and in vivo antitumor efficacy compared to formulations containing solely liposomes. Here, we describe the custom synthesis of a library of high-curvature micelle-inducing PEG-lipids and examine the effects of PEG chain length, chain branching (single- or double-PEG-lipid), and cationic charge on PTX solubility and cytotoxicity. We examined PEG-lipids at standard (10 mol%) and high (100-x mol%, where x=PTX mol%) formulation ratios. Remarkably, all formulations containing the synthesized high-curvature PEG-lipids had improved PTX solubility over unPEGylated formulations and commercially available DOPE-5k. The highest PTX solubility was found within the 100-xPTX mol% PEG-lipid micellar formulations, with particles made from 2k2 (two PEG2k chains) encapsulating 13 mol% PTX for up to 24 h. The pancreatic cancer cell line PC3 exhibited higher sensitivity to formulations containing PEG-lipid at 100-xPTX mol%, the most potent of which being formulations made from 2k2 (IC50 = 14 nM). The work presented here suggests formulations employing high-curvature PEG-lipids, particularly the double-PEG-lipid 2k2, hold great potential as next-generation PTX delivery systems owing to their high PTX solubility, enhanced cell cytotoxicity, and ability for precision targeting by affixation of ligands to the PEG molecules.
Collapse
Affiliation(s)
- Aria Ghasemizadeh
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
| | - Lili Wan
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Aiko Hirose
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Jacqueline Diep
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| | - Kai K Ewert
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R Safinya
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
2
|
Nsairat H, Ibrahim AA, Jaber AM, Abdelghany S, Atwan R, Shalan N, Abdelnabi H, Odeh F, El-Tanani M, Alshaer W. Liposome bilayer stability: emphasis on cholesterol and its alternatives. J Liposome Res 2024; 34:178-202. [PMID: 37378553 DOI: 10.1080/08982104.2023.2226216] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/15/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Liposomes are spherical lipidic nanocarriers composed of natural or synthetic phospholipids with a hydrophobic bilayer and aqueous core, which are arranged into a polar head and a long hydrophobic tail, forming an amphipathic nano/micro-particle. Despite numerous liposomal applications, their use encounters many challenges related to the physicochemical properties strongly affected by their constituents, colloidal stability, and interactions with the biological environment. This review aims to provide a perspective and a clear idea about the main factors that regulate the liposomes' colloidal and bilayer stability, emphasising the roles of cholesterol and its possible alternatives. Moreover, this review will analyse strategies that offer possible approaches to provide more stable in vitro and in vivo liposomes with enhanced drug release and encapsulation efficiencies.
Collapse
Affiliation(s)
- Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Abed Alqader Ibrahim
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Areej M Jaber
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Randa Atwan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Naeem Shalan
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Hiba Abdelnabi
- Faculty of Pharmacy, The University of Jordan, Amman, Jordan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Fadwa Odeh
- Department of Chemistry, The University of Jordan, Amman, Jordan
| | - Mohamed El-Tanani
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
- Institute of Cancer Therapeutics, University of Bradford, Bradford, UK
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| |
Collapse
|
3
|
Steffes VM, Zhang Z, Ewert KK, Safinya CR. Cryo-TEM Reveals the Influence of Multivalent Charge and PEGylation on Shape Transitions in Fluid Lipid Assemblies: From Vesicles to Discs, Rods, and Spheres. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18424-18436. [PMID: 38051205 PMCID: PMC10799670 DOI: 10.1021/acs.langmuir.3c02664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Lipids, and cationic lipids in particular are of interest as delivery vectors for hydrophobic drugs such as the cancer therapeutic paclitaxel, and the structures of lipid assemblies affect their efficacy. We investigated the effect of incorporating the multivalent cationic lipid MVL5 (+5e) and poly(ethylene glycol)-lipids (PEG-lipids), alone and in combination, on the structure of fluid-phase lipid assemblies of the charge-neutral lipid 1,2-dioleoyl-sn-glycero-phosphocholine (DOPC). This allowed us to elucidate lipid-assembly structure correlations in sonicated formulations with high charge density, which are not accessible with univalent lipids such as the well-studied DOTAP (+1e). Cryogenic transmission electron microscopy (cryo-TEM) allowed us to determine the structure of the lipid assemblies, revealing diverse combinations of vesicles and disc-shaped, worm-like, and spherical micelles. Remarkably, MVL5 forms an essentially pure phase of disc micelles at 50 mol % MVL5. At a higher (75 mol %) content of MVL5, short- and intermediate-length worm-like micellar rods were observed, and in ternary mixtures with PEG-lipid, longer and highly flexible worm-like micelles formed. Independent of their length, the worm-like micelles coexisted with spherical micelles. In stark contrast, DOTAP forms mixtures of vesicles, disc micelles, and spherical micelles at all studied compositions, even when combined with PEG-lipids. The observed similarities and differences in the effects of charge (multivalent versus univalent) and high curvature (multivalent charge versus PEG-lipid) on the assembly structure provide insights into parameters that control the size of fluid lipid nanodiscs, relevant for future applications.
Collapse
Affiliation(s)
- Victoria M. Steffes
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Chemistry and Biochemistry Department, University of California, Santa Barbara, California 93106, USA
| | - Zhening Zhang
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY 10027, USA
- Present Address: Biochemistry and Molecular Biophysics Department, Columbia University Medical Center, New York, NY 10032, USA
| | - Kai K. Ewert
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R. Safinya
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
4
|
Steffes V, MacDonald S, Crowe J, Murali M, Ewert KK, Li Y, Safinya CR. Lipids with negative spontaneous curvature decrease the solubility of the cancer drug paclitaxel in liposomes. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:128. [PMID: 38099960 PMCID: PMC10802834 DOI: 10.1140/epje/s10189-023-00388-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Paclitaxel (PTX) is a hydrophobic small-molecule cancer drug that loads into the membrane (tail) region of lipid carriers such as liposomes and micelles. The development of improved lipid-based carriers of PTX is an important objective to generate chemotherapeutics with fewer side effects. The lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and glyceryl monooleate (GMO) show propensity for fusion with other lipid membranes, which has led to their use in lipid vectors of nucleic acids. We hypothesized that DOPE and GMO could enhance PTX delivery to cells through a similar membrane fusion mechanism. As an important measure of drug carrier performance, we evaluated PTX solubility in cationic liposomes containing GMO or DOPE. Solubility was determined by time-dependent kinetic phase diagrams generated from direct observations of PTX crystal formation using differential-interference-contrast optical microscopy. Remarkably, PTX was much less soluble in these liposomes than in control cationic liposomes containing univalent cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), which are not fusogenic. In particular, PTX was not substantially soluble in GMO-based cationic liposomes. The fusogenicity of DOPE and GMO is related to the negative spontaneous curvature of membranes containing these lipids, which drives formation of nonlamellar self-assembled phases (inverted hexagonal or gyroid cubic). To determine whether PTX solubility is governed by lipid membrane structure or by local intermolecular interactions, we used synchrotron small-angle X-ray scattering. To increase the signal/noise ratio, we used DNA to condense the lipid formulations into lipoplex pellets. The results suggest that local intermolecular interactions are of greater importance and that the negative spontaneous curvature-inducing lipids DOPE and GMO are not suitable components of liposomal carriers for PTX delivery.
Collapse
Affiliation(s)
- Victoria Steffes
- Materials Department, University of California, Santa Barbara, CA, 93106, USA
- Chemistry and Biochemistry Department, University of California, Santa Barbara, CA, 93106, USA
| | - Scott MacDonald
- Physics Department, University of California, Santa Barbara, CA, 93106, USA
| | - John Crowe
- Physics Department, University of California, Santa Barbara, CA, 93106, USA
| | - Meena Murali
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, 93106, USA
| | - Kai K Ewert
- Materials Department, University of California, Santa Barbara, CA, 93106, USA
| | - Youli Li
- Materials Research Laboratory, University of California, Santa Barbara, CA, 93106, USA
| | - Cyrus R Safinya
- Materials Department, University of California, Santa Barbara, CA, 93106, USA.
- Physics Department, University of California, Santa Barbara, CA, 93106, USA.
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
5
|
Silli EK, Li M, Shao Y, Zhang Y, Hou G, Du J, Liang J, Wang Y. Liposomal nanostructures for Gemcitabine and Paclitaxel delivery in pancreatic cancer. Eur J Pharm Biopharm 2023; 192:13-24. [PMID: 37758121 DOI: 10.1016/j.ejpb.2023.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/01/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Pancreatic cancer (PC) is an incurable disease with a high death rate in the world nowadays. Gemcitabine (GEM) and Paclitaxel (PTX) are considered as references of chemotherapeutic treatments and are commonly used in clinical applications. Factors related to the tumor microenvironment such as insufficient tumor penetration, toxicity, and drug resistance can limit the effectiveness of these therapeutic anticancer drugs. The use of different liposomal nanostructures is a way that can optimize the drug's effectiveness and reduce toxicity. Given the development of PC therapy, this review focuses on advances in Nano-formulation, characterization, and delivery systems of loaded GEM and PTX liposomes using chemotherapy, nucleic acid delivery, and stroma remodeling therapy. As a result, the review covers the literature dealing with the applications of liposomes in PC therapy.
Collapse
Affiliation(s)
- Epiphane K Silli
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Mengfei Li
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China.
| | - Yuting Shao
- College of Engineering, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Yiran Zhang
- College of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Guilin Hou
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jiaqian Du
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Jingdan Liang
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China
| | - Ying Wang
- School of Life Sciences and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
6
|
Steffes V, MacDonald S, Crowe J, Murali M, Ewert KK, Li Y, Safinya CR. Lipids with negative spontaneous curvature decrease the solubility of the cancer drug paclitaxel in liposomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.563006. [PMID: 37905081 PMCID: PMC10614943 DOI: 10.1101/2023.10.18.563006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Paclitaxel (PTX) is a hydrophobic small-molecule cancer drug that loads into the membrane (tail) region of lipid carriers such as liposomes and micelles. The development of improved lipid-based carriers of PTX is an important objective to generate chemotherapeutics with fewer side effects. The lipids 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and glyceryl monooleate (GMO) show propensity for fusion with other lipid membranes, which has led to their use in lipid vectors of nucleic acids. We hypothesized that DOPE and GMO could enhance PTX delivery to cells through a similar membrane fusion mechanism. As an important measure of drug carrier performance, we evaluated PTX solubility in cationic liposomes containing GMO or DOPE. Solubility was determined by time-dependent kinetic phase diagrams generated from direct observations of PTX crystal formation using differential-interference-contrast optical microscopy. Remarkably, PTX was much less soluble in these liposomes than in control cationic liposomes containing univalent cationic lipid 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) and 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC), which are not fusogenic. In particular, PTX was not substantially soluble in GMO-based cationic liposomes. The fusogenicity of DOPE and GMO is related to the negative spontaneous curvature of membranes containing these lipids, which drives formation of nonlamellar self-assembled phases (inverted hexagonal or gyroid cubic). We used synchrotron small-angle x-ray scattering to determine whether PTX solubility is governed by lipid membrane structure (condensed with DNA in pellet form) or by local intermolecular interactions. The results suggest that local intermolecular interactions are of greater importance and that the negative spontaneous curvature-inducing lipids DOPE and GMO are not suitable components of lipid carriers for PTX delivery regardless of carrier structure.
Collapse
Affiliation(s)
- Victoria Steffes
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Chemistry and Biochemistry Department, University of California, Santa Barbara, California 93106, USA
| | - Scott MacDonald
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - John Crowe
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, USA
| | - Meena Murali
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Kai K Ewert
- Materials Department, University of California, Santa Barbara, California 93106, USA
| | - Youli Li
- Physics Department, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R Safinya
- Materials Department, University of California, Santa Barbara, California 93106, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
7
|
Pushpa Ragini S, White J, Kirby N, Banerjee R, Reddy Bathula S, Drummond CJ, Conn CE. Novel bioactive cationic cubosomes enhance the cytotoxic effect of paclitaxel against a paclitaxel resistant prostate cancer cell-line. J Colloid Interface Sci 2023; 649:966-976. [PMID: 37392686 DOI: 10.1016/j.jcis.2023.06.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/05/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Hypothesis The study aimed to use molecular hybridization of a cationic lipid with a known pharmacophore to produce a bifunctional lipid having a cationic charge to enhance fusion with the cancer cell surface and biological activity via the pharmacophoric head group. Experiments The novel cationic lipid DMP12 [N-(2-(3-(3,4-dimethoxyphenyl) propanamido) ethyl)-N-dodecyl-N-methyldodecan-1-aminium iodide] was synthesised by conjugating 3-(3,4-dimethoxyphenyl) propanoic acid (or 3,4-dimethoxyhydrocinnamic acid) to twin 12 carbon chains bearing a quaternary ammonium group [N-(2-aminoethyl)-N-dodecyl-N-methyldodecan-1-aminium iodide]. The physicochemical and biological properties of DMP12 were investigated. Cubosome particles consisting of monoolein (MO) doped with DMP12 and paclitaxel were characterized using Small-angle X-ray Scattering (SAXS), Dynamic Light Scattering (DLS), and Cryo-Transmission Electron Microscopy (Cryo-TEM). Combination therapy using these cubosomes was assessed in vitro against the gastric (AGS) and prostate (DU-145 and PC-3) cancer cell lines using cytotoxicity assay. Findings Monoolein (MO) cubosomes doped with DMP12 were observed to be toxic against the AGS and DU-145 cell-lines at higher cubosome concentrations (≥100 µg/ml) but had limited activity against the PC-3 cell-line. However, combination therapy consisting of 5 mol% DMP12 and 0.5 mol% paclitaxel (PTX) significantly increased the cytotoxicity against the PC-3 cell-line which was resistant to either DMP12 or PTX individually. The results demonstrate that DMP12 has a prospective role as a bioactive excipient in cancer therapy.
Collapse
Affiliation(s)
- S Pushpa Ragini
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India; School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Jacinta White
- CSIRO Manufacturing, Bayview Avenue, Clayton, VIC 3168, Australia
| | - Nigel Kirby
- Australian Synchrotron, 800 Blackburn Rd, Clayton, VIC 3168, Australia
| | - Rajkumar Banerjee
- Department of Oils, lipids science and technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India; Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India
| | - Surendar Reddy Bathula
- Academy of Scientific and Innovation Research (AcSIR), Ghaziabad, 201002, India; Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad-500007, India
| | - Calum J Drummond
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia
| | - Charlotte E Conn
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne 3000, Victoria, Australia.
| |
Collapse
|
8
|
López-Méndez TB, Sánchez-Álvarez M, Trionfetti F, Pedraz JL, Tripodi M, Cordani M, Strippoli R, González-Valdivieso J. Nanomedicine for autophagy modulation in cancer therapy: a clinical perspective. Cell Biosci 2023; 13:44. [PMID: 36871010 PMCID: PMC9985235 DOI: 10.1186/s13578-023-00986-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
In recent years, progress in nanotechnology provided new tools to treat cancer more effectively. Advances in biomaterials tailored for drug delivery have the potential to overcome the limited selectivity and side effects frequently associated with traditional therapeutic agents. While autophagy is pivotal in determining cell fate and adaptation to different challenges, and despite the fact that it is frequently dysregulated in cancer, antitumor therapeutic strategies leveraging on or targeting this process are scarce. This is due to many reasons, including the very contextual effects of autophagy in cancer, low bioavailability and non-targeted delivery of existing autophagy modulatory compounds. Conjugating the versatile characteristics of nanoparticles with autophagy modulators may render these drugs safer and more effective for cancer treatment. Here, we review current standing questions on the biology of autophagy in tumor progression, and precursory studies and the state-of-the-art in harnessing nanomaterials science to enhance the specificity and therapeutic potential of autophagy modulators.
Collapse
Affiliation(s)
- Tania B López-Méndez
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Miguel Sánchez-Álvarez
- Area of Cell and Developmental Biology. Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain.,Instituto de Investigaciones Biomédicas Alberto Sols (IIB), Madrid, Spain
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - José L Pedraz
- NanoBioCel Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain
| | - Marco Tripodi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.,National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain. .,Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain.
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy. .,National Institute for Infectious Diseases L. Spallanzani IRCCS, Rome, Italy.
| | - Juan González-Valdivieso
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA.
| |
Collapse
|
9
|
Simón-Gracia L, Scodeller P, Fisher WS, Sidorenko V, Steffes VM, Ewert KK, Safinya CR, Teesalu T. Paclitaxel-Loaded Cationic Fluid Lipid Nanodiscs and Liposomes with Brush-Conformation PEG Chains Penetrate Breast Tumors and Trigger Caspase-3 Activation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56613-56622. [PMID: 36521233 PMCID: PMC9879205 DOI: 10.1021/acsami.2c17961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Novel approaches are required to address the urgent need to develop lipid-based carriers of paclitaxel (PTX) and other hydrophobic drugs for cancer chemotherapy. Carriers based on cationic liposomes (CLs) with fluid (i.e., chain-melted) membranes (e.g., EndoTAG-1) have shown promise in preclinical and late-stage clinical studies. Recent work found that the addition of a cone-shaped poly(ethylene glycol)-lipid (PEG-lipid) to PTX-loaded CLs (CLsPTX) promotes a transition to sterically stabilized, higher-curvature (smaller) nanoparticles consisting of a mixture of PEGylated CLsPTX and PTX-containing fluid lipid nanodiscs (nanodiscsPTX). These CLsPTX and nanodiscsPTX show significantly improved uptake and cytotoxicity in cultured human cancer cells at PEG coverage in the brush regime (10 mol % PEG-lipid). Here, we studied the PTX loading, in vivo circulation half-life, and biodistribution of systemically administered CLsPTX and nanodiscsPTX and assessed their ability to induce apoptosis in triple-negative breast-cancer-bearing immunocompetent mice. We focused on fluid rather than solid lipid nanodiscs because of the significantly higher solubility of PTX in fluid membranes. At 5 and 10 mol % of a PEG-lipid (PEG5K-lipid, molecular weight of PEG 5000 g/mol), the mixture of PEGylated CLsPTX and nanodiscsPTX was able to incorporate up to 2.5 mol % PTX without crystallization for at least 20 h. Remarkably, compared to preparations containing 2 and 5 mol % PEG5K-lipid (with the PEG chains in the mushroom regime), the particles at 10 mol % (with PEG chains in the brush regime) showed significantly higher blood half-life, tumor penetration, and proapoptotic activity. Our study suggests that increasing the PEG coverage of CL-based drug nanoformulations can improve their pharmacokinetics and therapeutic efficacy.
Collapse
Affiliation(s)
- Lorena Simón-Gracia
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Pablo Scodeller
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB-CSIC), Calle Darwin 3, 28049, Madrid, Spain
| | - William S. Fisher
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Valeria Sidorenko
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
| | - Victoria M. Steffes
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Kai K. Ewert
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Cyrus R. Safinya
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, California 93106, USA
| | - Tambet Teesalu
- Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia
- Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States
| |
Collapse
|
10
|
Imtiyaz Z, He J, Leng Q, Agrawal AK, Mixson AJ. pH-Sensitive Targeting of Tumors with Chemotherapy-Laden Nanoparticles: Progress and Challenges. Pharmaceutics 2022; 14:pharmaceutics14112427. [PMID: 36365245 PMCID: PMC9692785 DOI: 10.3390/pharmaceutics14112427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/03/2022] [Accepted: 11/05/2022] [Indexed: 11/12/2022] Open
Abstract
Accumulating chemotherapeutic drugs such as doxorubicin within a tumor while limiting the drug dose to normal tissues is a central goal of drug delivery with nanoparticles. Liposomal products such as Doxil® represent one of the marked successes of nanoparticle-based strategies. To replicate this success for cancer treatment, many approaches with nanoparticles are being explored in order to direct and release chemotherapeutic agents to achieve higher accumulation in tumors. A promising approach has been stimulus-based therapy, such as the release of chemotherapeutic agents from the nanoparticles in the acidic environments of the tumor matrix or the tumor endosomes. Upon reaching the acidic environments of the tumor, the particles, which are made up of pH-dependent polymers, become charged and release the entrapped chemotherapy agents. This review discusses recent advances in and prospects for pH-dependent histidine-based nanoparticles that deliver chemotherapeutic agents to tumors. The strategies used by investigators include an array of histidine-containing peptides and polymers which form micelles, mixed micelles, nanovesicles, polyplexes, and coat particles. To date, several promising histidine-based nanoparticles have been demonstrated to produce marked inhibition of tumor growth, but challenges remain for successful outcomes in clinical trials. The lessons learned from these histidine-containing particles will provide insight in the development of improved pH-dependent polymeric delivery systems for chemotherapy.
Collapse
Affiliation(s)
- Zuha Imtiyaz
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA
| | - Jiaxi He
- 20511 Seneca Meadows Pkwy, Suite 260, RNAimmune, Germantown, MD 20876, USA
| | - Qixin Leng
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA
| | - Atul K. Agrawal
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA
| | - A. James Mixson
- Department of Pathology, University Maryland School of Medicine, 10 S. Pine St., University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-3223; Fax: +1-410-706-8414
| |
Collapse
|
11
|
El-Far SW, Abo El-Enin HA, Abdou EM, Nafea OE, Abdelmonem R. Targeting Colorectal Cancer Cells with Niosomes Systems Loaded with Two Anticancer Drugs Models; Comparative In Vitro and Anticancer Studies. Pharmaceuticals (Basel) 2022; 15:ph15070816. [PMID: 35890115 PMCID: PMC9323826 DOI: 10.3390/ph15070816] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer (CRC) is considered one of the most commonly diagnosed malignant diseases. Recently, there has been an increased focus on using nanotechnology to resolve most of the limitations in conventional chemotherapy. Niosomes have great advantages that overcome the drawbacks associated with other lipid drug delivery systems. They are simple, cheap, and highly stable nanocarriers. This study investigated the effectiveness of using niosomes with their amphiphilic characteristics in the incorporation of both hydrophilic and hydrophobic anticancer drugs for CRC treatment. Methods: Drug-free niosomes were formulated using a response surface D-optimal factorial design to study the cholesterol molar ratio, surfactant molar ratio and surfactant type effect on the particle size and Z-potential of the prepared niosomes. After numerical and statistical optimization, an optimized formulation having a particle size of 194.4 ± 15.5 nm and a Z-potential of 31.8 ± 1.9 mV was selected to be loaded with Oxaliplatin and Paclitaxel separately in different concentrations. The formulations with the highest entrapment efficiency (EE%) were evaluated for their drug release using the dialysis bag method, in vitro antitumor activity on HT-29 colon cancer cell line and apoptosis activity. Results: Niosomes prepared using d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) at a molar ratio 4, cholesterol (2 molar ratio) and loaded with 1 molar ratio of either Oxaliplatin or Paclitaxel provided nanosized vesicles (278.5 ± 19.7 and 251.6 ± 18.1 nm) with a Z-potential value (32.7 ± 1.01 and 31.69 ± 0.98 mV) with the highest EE% (90.57 ± 2.05 and 93.51 ± 2.97) for Oxaliplatin and Paclitaxel, respectively. These formulations demonstrated up to 48 h drug release and increased the in vitro cytotoxicity and apoptosis efficiency of both drugs up to twice as much as free drugs. Conclusion: These findings suggest that different formulation composition parameters can be adjusted to obtain nanosized niosomal vesicles with an accepted Z-potential. These niosomes could be loaded with either hydrophilic drugs such as Oxaliplatin or hydrophobic drugs such as Paclitaxel. Drug-loaded niosomes, as a unique nanomicellar system, could enhance the cellular uptake of both drugs, resulting in enhanced cytotoxic and apoptosis effects against HT-29 colon cancer cells. Oxaliplatin–niosomes and Paclitaxel–niosomes can be considered promising alternative drug delivery systems with enhanced bioavailability of these two anticancer drugs for colorectal cancer treatment.
Collapse
Affiliation(s)
- Shaymaa Wagdy El-Far
- Division of Pharmaceutical Microbiology, Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (S.W.E.-F.); (H.A.A.E.-E.)
| | - Hadel A. Abo El-Enin
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Correspondence: (S.W.E.-F.); (H.A.A.E.-E.)
| | - Ebtsam M. Abdou
- Department of Pharmaceutics, National Organization of Drug Control and Research (NODCAR), Giza P.O. Box 12511, Egypt;
| | - Ola Elsayed Nafea
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City P.O. Box 12566, Egypt;
| |
Collapse
|
12
|
Nel AE, Mei KC, Liao YP, Lu X. Multifunctional Lipid Bilayer Nanocarriers for Cancer Immunotherapy in Heterogeneous Tumor Microenvironments, Combining Immunogenic Cell Death Stimuli with Immune Modulatory Drugs. ACS NANO 2022; 16:5184-5232. [PMID: 35348320 PMCID: PMC9519818 DOI: 10.1021/acsnano.2c01252] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In addition to the contribution of cancer cells, the solid tumor microenvironment (TME) has a critical role in determining tumor expansion, antitumor immunity, and the response to immunotherapy. Understanding the details of the complex interplay between cancer cells and components of the TME provides an unprecedented opportunity to explore combination therapy for intervening in the immune landscape to improve immunotherapy outcome. One approach is the introduction of multifunctional nanocarriers, capable of delivering drug combinations that provide immunogenic stimuli for improvement of tumor antigen presentation, contemporaneous with the delivery of coformulated drug or synthetic molecules that provide immune danger signals or interfere in immune-escape, immune-suppressive, and T-cell exclusion pathways. This forward-looking review will discuss the use of lipid-bilayer-encapsulated liposomes and mesoporous silica nanoparticles for combination immunotherapy of the heterogeneous immune landscapes in pancreatic ductal adenocarcinoma and triple-negative breast cancer. We describe how the combination of remote drug loading and lipid bilayer encapsulation is used for the synthesis of synergistic drug combinations that induce immunogenic cell death, interfere in the PD-1/PD-L1 axis, inhibit the indoleamine-pyrrole 2,3-dioxygenase (IDO-1) immune metabolic pathway, restore spatial access to activated T-cells to the cancer site, or reduce the impact of immunosuppressive stromal components. We show how an integration of current knowledge and future discovery can be used for a rational approach to nanoenabled cancer immunotherapy.
Collapse
Affiliation(s)
- André E. Nel
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California 90095, United States
| | - Kuo-Ching Mei
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Yu-Pei Liao
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| | - Xiangsheng Lu
- Division of NanoMedicine, Department of Medicine, David Geffen School of Medicine University of California, Los Angeles, California, 90095, United States
- California NanoSystems Institute, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
13
|
Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. NANO CONVERGENCE 2021; 8:34. [PMID: 34727233 PMCID: PMC8560887 DOI: 10.1186/s40580-021-00282-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/09/2023]
Abstract
Modern medicine has been waging a war on cancer for nearly a century with no tangible end in sight. Cancer treatments have significantly progressed, but the need to increase specificity and decrease systemic toxicities remains. Early diagnosis holds a key to improving prognostic outlook and patient quality of life, and diagnostic tools are on the cusp of a technological revolution. Nanotechnology has steadily expanded into the reaches of cancer chemotherapy, radiotherapy, diagnostics, and imaging, demonstrating the capacity to augment each and advance patient care. Nanomaterials provide an abundance of versatility, functionality, and applications to engineer specifically targeted cancer medicine, accurate early-detection devices, robust imaging modalities, and enhanced radiotherapy adjuvants. This review provides insights into the current clinical and pre-clinical nanotechnological applications for cancer drug therapy, diagnostics, imaging, and radiation therapy.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
14
|
Ewert KK, Scodeller P, Simón-Gracia L, Steffes VM, Wonder EA, Teesalu T, Safinya CR. Cationic Liposomes as Vectors for Nucleic Acid and Hydrophobic Drug Therapeutics. Pharmaceutics 2021; 13:1365. [PMID: 34575441 PMCID: PMC8465808 DOI: 10.3390/pharmaceutics13091365] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/09/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cationic liposomes (CLs) are effective carriers of a variety of therapeutics. Their applications as vectors of nucleic acids (NAs), from long DNA and mRNA to short interfering RNA (siRNA), have been pursued for decades to realize the promise of gene therapy, with approvals of the siRNA therapeutic patisiran and two mRNA vaccines against COVID-19 as recent milestones. The long-term goal of developing optimized CL-based NA carriers for a broad range of medical applications requires a comprehensive understanding of the structure of these vectors and their interactions with cell membranes and components that lead to the release and activity of the NAs within the cell. Structure-activity relationships of lipids for CL-based NA and drug delivery must take into account that these lipids act not individually but as components of an assembly of many molecules. This review summarizes our current understanding of how the choice of the constituting lipids governs the structure of their CL-NA self-assemblies, which constitute distinct liquid crystalline phases, and the relation of these structures to their efficacy for delivery. In addition, we review progress toward CL-NA nanoparticles for targeted NA delivery in vivo and close with an outlook on CL-based carriers of hydrophobic drugs, which may eventually lead to combination therapies with NAs and drugs for cancer and other diseases.
Collapse
Affiliation(s)
- Kai K. Ewert
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Pablo Scodeller
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
| | - Lorena Simón-Gracia
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
| | - Victoria M. Steffes
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Emily A. Wonder
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| | - Tambet Teesalu
- Laboratory of Precision- and Nanomedicine, Institute of Biomedicine and Translational Medicine, Centre of Excellence for Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; (P.S.); (L.S.-G.)
- Center for Nanomedicine and Department of Cell, Molecular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
| | - Cyrus R. Safinya
- Materials, Physics, and Molecular, Cellular, and Developmental Biology Departments, and Biomolecular Science and Engineering Program, University of California at Santa Barbara, Santa Barbara, CA 93106, USA; (V.M.S.); (E.A.W.)
| |
Collapse
|