1
|
Moreira FM, Machado TI, Torres CAR, de Souza HR, Celestino MF, Silva MA, Gomes GC, Cunha BBDR, dos Santos PDLB, de Carvalho Filho MR, de Castro MT, Monnerat RG. Purpureocillium lilacinum SBF054: Endophytic in Phaseolus vulgaris, Glycine max, and Helianthus annuus; Antagonistic to Rhizoctonia solani; and Virulent to Euschistus heros. Microorganisms 2024; 12:1100. [PMID: 38930483 PMCID: PMC11205651 DOI: 10.3390/microorganisms12061100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Microorganisms with multiple ecological functions can be a useful biotechnological resource in integrated pest- and disease-management programs. This work aimed to investigate the potential endophytic and virulent effects of a strain of Purpureocillium lilacinum on organic cultivation in Brazil. Specifically, the strain's ability to establish itself as an endophyte in common bean, soybean, and sunflower plants when inoculated via seed was evaluated. Furthermore, its antifungal activity against phytopathogens and its pathogenicity and virulence against insects of the order Lepidoptera, Coleoptera, and Hemiptera were evaluated. Furthermore, the strain was evaluated for its biochemical and physiological characteristics. For virulence bioassays, the experiments were conducted under a factorial scheme (2 × 3), with the following factors: (a) fungal inoculation and control without inoculum and (b) types of inocula (blastospores, aerial conidia, and metabolites). The treatments were sprayed on insect species at different stages of development. In summary, it was found that the SBF054 strain endophytically colonized the common bean, with partial recovery from the root tissues of soybean and sunflower plants, 30 days after inoculation; suppressed 86% of Rhizoctonia solani mycelial growth in an in vitro assay; and controlled eggs, nymphs, and Euschistus heros adults. These multifunctional abilities are mainly attributed to the strain's mechanisms of producing metabolites, such as organic acids, soluble nutrients, and hydrolytic enzymes.
Collapse
Affiliation(s)
- Flávia Melo Moreira
- SoluScience, SoluBio Tecnologias Agrícolas, Brasília 70632-300, Brazil; (C.A.R.T.); (H.R.d.S.); (M.F.C.); (M.A.S.); (G.C.G.); (B.B.d.R.C.); (P.d.L.B.d.S.); (M.R.d.C.F.); (M.T.d.C.); (R.G.M.)
| | | | - Caio Augusto Rosado Torres
- SoluScience, SoluBio Tecnologias Agrícolas, Brasília 70632-300, Brazil; (C.A.R.T.); (H.R.d.S.); (M.F.C.); (M.A.S.); (G.C.G.); (B.B.d.R.C.); (P.d.L.B.d.S.); (M.R.d.C.F.); (M.T.d.C.); (R.G.M.)
| | - Hebert Ribeiro de Souza
- SoluScience, SoluBio Tecnologias Agrícolas, Brasília 70632-300, Brazil; (C.A.R.T.); (H.R.d.S.); (M.F.C.); (M.A.S.); (G.C.G.); (B.B.d.R.C.); (P.d.L.B.d.S.); (M.R.d.C.F.); (M.T.d.C.); (R.G.M.)
| | - Matheus Felipe Celestino
- SoluScience, SoluBio Tecnologias Agrícolas, Brasília 70632-300, Brazil; (C.A.R.T.); (H.R.d.S.); (M.F.C.); (M.A.S.); (G.C.G.); (B.B.d.R.C.); (P.d.L.B.d.S.); (M.R.d.C.F.); (M.T.d.C.); (R.G.M.)
| | - Marco Antônio Silva
- SoluScience, SoluBio Tecnologias Agrícolas, Brasília 70632-300, Brazil; (C.A.R.T.); (H.R.d.S.); (M.F.C.); (M.A.S.); (G.C.G.); (B.B.d.R.C.); (P.d.L.B.d.S.); (M.R.d.C.F.); (M.T.d.C.); (R.G.M.)
| | - Giovana Cidade Gomes
- SoluScience, SoluBio Tecnologias Agrícolas, Brasília 70632-300, Brazil; (C.A.R.T.); (H.R.d.S.); (M.F.C.); (M.A.S.); (G.C.G.); (B.B.d.R.C.); (P.d.L.B.d.S.); (M.R.d.C.F.); (M.T.d.C.); (R.G.M.)
| | - Breno Beda dos Reis Cunha
- SoluScience, SoluBio Tecnologias Agrícolas, Brasília 70632-300, Brazil; (C.A.R.T.); (H.R.d.S.); (M.F.C.); (M.A.S.); (G.C.G.); (B.B.d.R.C.); (P.d.L.B.d.S.); (M.R.d.C.F.); (M.T.d.C.); (R.G.M.)
| | - Pedro de Luca Buffon dos Santos
- SoluScience, SoluBio Tecnologias Agrícolas, Brasília 70632-300, Brazil; (C.A.R.T.); (H.R.d.S.); (M.F.C.); (M.A.S.); (G.C.G.); (B.B.d.R.C.); (P.d.L.B.d.S.); (M.R.d.C.F.); (M.T.d.C.); (R.G.M.)
| | - Magno Rodrigues de Carvalho Filho
- SoluScience, SoluBio Tecnologias Agrícolas, Brasília 70632-300, Brazil; (C.A.R.T.); (H.R.d.S.); (M.F.C.); (M.A.S.); (G.C.G.); (B.B.d.R.C.); (P.d.L.B.d.S.); (M.R.d.C.F.); (M.T.d.C.); (R.G.M.)
| | - Marcelo Tavares de Castro
- SoluScience, SoluBio Tecnologias Agrícolas, Brasília 70632-300, Brazil; (C.A.R.T.); (H.R.d.S.); (M.F.C.); (M.A.S.); (G.C.G.); (B.B.d.R.C.); (P.d.L.B.d.S.); (M.R.d.C.F.); (M.T.d.C.); (R.G.M.)
| | - Rose Gomes Monnerat
- SoluScience, SoluBio Tecnologias Agrícolas, Brasília 70632-300, Brazil; (C.A.R.T.); (H.R.d.S.); (M.F.C.); (M.A.S.); (G.C.G.); (B.B.d.R.C.); (P.d.L.B.d.S.); (M.R.d.C.F.); (M.T.d.C.); (R.G.M.)
| |
Collapse
|
2
|
Janczarek M, Kozieł M, Adamczyk P, Buczek K, Kalita M, Gromada A, Mordzińska-Rak A, Polakowski C, Bieganowski A. Symbiotic efficiency of Rhizobium leguminosarum sv. trifolii strains originating from the subpolar and temperate climate regions. Sci Rep 2024; 14:6264. [PMID: 38491088 PMCID: PMC10943007 DOI: 10.1038/s41598-024-56988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
Red clover (Trifolium pratense L.) is a forage legume cultivated worldwide. This plant is capable of establishing a nitrogen-fixing symbiosis with Rhizobium leguminosarum symbiovar trifolii strains. To date, no comparative analysis of the symbiotic properties and heterogeneity of T. pratense microsymbionts derived from two distinct geographic regions has been performed. In this study, the symbiotic properties of strains originating from the subpolar and temperate climate zones in a wide range of temperatures (10-25 °C) have been characterized. Our results indicate that all the studied T. pratense microsymbionts from two geographic regions were highly efficient in host plant nodulation and nitrogen fixation in a wide range of temperatures. However, some differences between the populations and between the strains within the individual population examined were observed. Based on the nodC and nifH sequences, the symbiotic diversity of the strains was estimated. In general, 13 alleles for nodC and for nifH were identified. Moreover, 21 and 61 polymorphic sites in the nodC and nifH sequences were found, respectively, indicating that the latter gene shows higher heterogeneity than the former one. Among the nodC and nifH alleles, three genotypes (I-III) were the most frequent, whereas the other alleles (IV-XIII) proved to be unique for the individual strains. Based on the nodC and nifH allele types, 20 nodC-nifH genotypes were identified. Among them, the most frequent were three genotypes marked as A (6 strains), B (5 strains), and C (3 strains). Type A was exclusively found in the temperate strains, whereas types B and C were identified in the subpolar strains. The remaining 17 genotypes were found in single strains. In conclusion, our data indicate that R. leguminosarum sv. trifolii strains derived from two climatic zones show a high diversity with respect to the symbiotic efficiency and heterogeneity. However, some of the R. leguminosarum sv. trifolii strains exhibit very good symbiotic potential in the wide range of the temperatures tested; hence, they may be used in the future for improvement of legume crop production.
Collapse
Affiliation(s)
- Monika Janczarek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland.
| | - Marta Kozieł
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Paulina Adamczyk
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Katarzyna Buczek
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Michał Kalita
- Department of Genetics and Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Anna Gromada
- Department of Industrial and Environmental Microbiology, Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, 19 Akademicka, 20-033, Lublin, Poland
| | - Aleksandra Mordzińska-Rak
- Department of Biochemistry and Molecular Biology, Faculty of Medical Studies, Medical University in Lublin, 1 Chodźki, 20-093, Lublin, Poland
| | - Cezary Polakowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna, 20-290, Lublin, Poland
| | - Andrzej Bieganowski
- Department of Natural Environment Biogeochemistry, Institute of Agrophysics, Polish Academy of Sciences, 4 Doświadczalna, 20-290, Lublin, Poland
| |
Collapse
|
3
|
Wang Z, Liu L, Hu D, Wang ET, Gu C, Wang H. Diversity of common bean rhizobia in blackland of northeastern China and their symbiotic compatibility with two host varieties. Front Microbiol 2023; 14:1195307. [PMID: 37485523 PMCID: PMC10362387 DOI: 10.3389/fmicb.2023.1195307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023] Open
Abstract
The common bean (Phaseolus vulgaris L.) is an important crop in the world that forms root nodules with diverse rhizobia. Aiming to learn the rhizobial communities associated with the common bean in the black soil of Northeast China, 79 rhizobia were isolated from root nodules of two host varieties (Cuican and Jiadouwang) grown in two sites of blackland and were characterized by comparative sequence analyses of 16S rRNA, recA, atpD, nodC, and nifH genes, and whole genome. As a result, Rhizobium indigoferae, R. anhuiense, and R. croatiense as minor groups and three dominant novel Rhizobium species were identified based on their average nucleotide identity and DNA-DNA hybridization values to the type strains of relative species. This community composition of rhizobia associated with the common bean in the tested black soils was unique. Despite their different species affiliations, all of them were identified into the symbiovar phaseoli according to the phylogenies of symbiotic genes, nodC and nifH. While the phylogenetic discrepancies found in nodC, nifH evidenced that the evolutions of nodulation (nod) and nitrogen fixation (nif ) genes were partially independent. In addition, only one dominant rhizobial species was shared by the two common bean varieties grown in the two soil samples, implying that both the plant variety and the soil characteristics affected the compatibility between rhizobia and their hosts. These findings further enlarged the spectrum of common bean-nodulating rhizobia and added more information about the interactions among the soil factors, rhizobial species, and host plants in the symbiosis.
Collapse
Affiliation(s)
- Ziqi Wang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Lili Liu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Dong Hu
- Institute of Agro-Resources and Environment/Hebei Fertilizer Technology Innovation Center, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, Hebei, China
| | - En Tao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Chuntao Gu
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hao Wang
- College of Life Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
4
|
Karavidas I, Ntatsi G, Ntanasi T, Tampakaki A, Giannopoulou A, Pantazopoulou D, Sabatino L, Iannetta PPM, Savvas D. Hydroponic Common-Bean Performance under Reduced N-Supply Level and Rhizobia Application. PLANTS (BASEL, SWITZERLAND) 2023; 12:646. [PMID: 36771728 PMCID: PMC9920343 DOI: 10.3390/plants12030646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
This study aims to explore the possibility of a reduced application of inorganic nitrogen (N) fertiliser on the yield, yield qualities, and biological nitrogen fixation (BNF) of the hydroponic common bean (Phaseolus vulgaris L.), without compromising plant performance, by utilizing the inherent ability of this plant to symbiotically fix N2. Until the flowering stage, plants were supplied with a nutrient solution containing N-concentrations of either a, 100%, conventional standard-practice, 13.8 mM; b, 75% of the standard, 10.35 mM; or c, 50% of the standard, 6.9 mM. During the subsequent reproductive stage, inorganic-N treatments b and c were decreased to 25% of the standard, and the standard (100% level) N-application was not altered. The three different inorganic-N supply treatments were combined with two different rhizobia strains, and a control (no-inoculation) treatment, in a two-factorial experiment. The rhizobia strains applied were either the indigenous strain Rhizobium sophoriradicis PVTN21 or the commercially supplied Rhizobium tropici CIAT 899. Results showed that the 50-25% mineral-N application regime led to significant increases in nodulation, BNF, and fresh-pod yield, compared to the other treatment, with a reduced inorganic-N supply. On the other hand, the 75-25% mineral-N regime applied during the vegetative stage restricted nodulation and BNF, thus incurring significant yield losses. Both rhizobia strains stimulated nodulation and BNF. However, the BNF capacity they facilitated was suppressed as the inorganic-N input increased. In addition, strain PVTN21 was superior to CIAT 899-as 50-25% N-treated plants inoculated with the former showed a yield loss of 11%, compared to the 100%-N-treated plants. In conclusion, N-use efficiency optimises BNF, reduces mineral-N-input dependency, and therefore may reduce any consequential negative environmental consequences of mineral-N over-application.
Collapse
Affiliation(s)
- Ioannis Karavidas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Theodora Ntanasi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Anastasia Tampakaki
- Department of Agriculture, Hellenic Mediterranean University, Estavromenos, 71410 Heraklion, Greece
| | - Ariadni Giannopoulou
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Dimitra Pantazopoulou
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Leo Sabatino
- Department of Agricultural, Food and Forest Sciences, University of Palermo, 90128 Palermo, Italy
| | | | - Dimitrios Savvas
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
5
|
Microbiome of Nodules and Roots of Soybean and Common Bean: Searching for Differences Associated with Contrasting Performances in Symbiotic Nitrogen Fixation. Int J Mol Sci 2022; 23:ijms231912035. [PMID: 36233333 PMCID: PMC9570480 DOI: 10.3390/ijms231912035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 01/10/2023] Open
Abstract
Biological nitrogen fixation (BNF) is a key process for the N input in agriculture, with outstanding economic and environmental benefits from the replacement of chemical fertilizers. However, not all symbioses are equally effective in fixing N2, and a major example relies on the high contribution associated with the soybean (Glycine max), contrasting with the low rates reported with the common bean (Phaseolus vulgaris) crop worldwide. Understanding these differences represents a major challenge that can help to design strategies to increase the contribution of BNF, and next-generation sequencing (NGS) analyses of the nodule and root microbiomes may bring new insights to explain differential symbiotic performances. In this study, three treatments evaluated in non-sterile soil conditions were investigated in both legumes: (i) non-inoculated control; (ii) inoculated with host-compatible rhizobia; and (iii) co-inoculated with host-compatible rhizobia and Azospirillum brasilense. In the more efficient and specific symbiosis with soybean, Bradyrhizobium presented a high abundance in nodules, with further increases with inoculation. Contrarily, the abundance of the main Rhizobium symbiont was lower in common bean nodules and did not increase with inoculation, which may explain the often-reported lack of response of this legume to inoculation with elite strains. Co-inoculation with Azospirillum decreased the abundance of the host-compatible rhizobia in nodules, probably because of competitiveness among the species at the rhizosphere, but increased in root microbiomes. The results showed that several other bacteria compose the nodule microbiomes of both legumes, including nitrogen-fixing, growth-promoters, and biocontrol agents, whose contribution to plant growth deserves further investigation. Several genera of bacteria were detected in root microbiomes, and this microbial community might contribute to plant growth through a variety of microbial processes. However, massive inoculation with elite strains should be better investigated, as it may affect the root microbiome, verified by both relative abundance and diversity indices, that might impact the contribution of microbial processes to plant growth.
Collapse
|