1
|
Ashiqueali SA, Schneider A, Zhu X, Juszczyk E, Mansoor MAM, Zhu Y, Fang Y, Zanini BM, Garcia DN, Hayslip N, Medina D, McFadden S, Stockwell R, Yuan R, Bartke A, Zasloff M, Siddiqi S, Masternak MM. Early life interventions metformin and trodusquemine metabolically reprogram the developing mouse liver through transcriptomic alterations. Aging Cell 2024; 23:e14227. [PMID: 38798180 PMCID: PMC11488326 DOI: 10.1111/acel.14227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024] Open
Abstract
Recent studies have demonstrated the remarkable potential of early life intervention strategies at influencing the course of postnatal development, thereby offering exciting possibilities for enhancing longevity and improving overall health. Metformin (MF), an FDA-approved medication for type II diabetes mellitus, has recently gained attention for its promising anti-aging properties, acting as a calorie restriction mimetic, and delaying precocious puberty. Additionally, trodusquemine (MSI-1436), an investigational drug, has been shown to combat obesity and metabolic disorders by inhibiting the enzyme protein tyrosine phosphatase 1b (Ptp1b), consequently reducing hepatic lipogenesis and counteracting insulin and leptin resistance. In this study, we aimed to further explore the effects of these compounds on young, developing mice to uncover biomolecular signatures that are central to liver metabolic processes. We found that MSI-1436 more potently alters mRNA and miRNA expression in the liver compared with MF, with bioinformatic analysis suggesting that cohorts of differentially expressed miRNAs inhibit the action of phosphoinositide 3-kinase (Pi3k), protein kinase B (Akt), and mammalian target of rapamycin (Mtor) to regulate the downstream processes of de novo lipogenesis, fatty acid oxidation, very-low-density lipoprotein transport, and cholesterol biosynthesis and efflux. In summary, our study demonstrates that administering these compounds during the postnatal window metabolically reprograms the liver through induction of potent epigenetic changes in the transcriptome, potentially forestalling the onset of age-related diseases and enhancing longevity. Future studies are necessary to determine the impacts on lifespan and overall quality of life.
Collapse
Affiliation(s)
- Sarah A. Ashiqueali
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | | | - Xiang Zhu
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | | | - Mishfak A. M. Mansoor
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | - Yun Zhu
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Yimin Fang
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Bianka M. Zanini
- Faculdade de NutriçãoUniversidade Federal de PelotasPelotasBrazil
| | - Driele N. Garcia
- Faculdade de NutriçãoUniversidade Federal de PelotasPelotasBrazil
| | - Natalie Hayslip
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | - David Medina
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Samuel McFadden
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Robert Stockwell
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Rong Yuan
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Andrzej Bartke
- Department of Internal MedicineSouthern Illinois University School of MedicineSpringfieldIllinoisUSA
| | - Michael Zasloff
- MedStar Georgetown Transplant InstituteGeorgetown University School of MedicineWashingtonDCUSA
| | - Shadab Siddiqi
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
| | - Michal M. Masternak
- Burnett School of Biomedical SciencesUniversity of Central Florida College of MedicineOrlandoFloridaUSA
- Department of Head and Neck SurgeryPoznan University of Medical SciencesPoznanPoland
| |
Collapse
|
2
|
Jiang D, Yang L, Meng X, Xu Q, Zhou X, Liu B. Let-7f-5p Modulates Lipid Metabolism by Targeting Sterol Regulatory Element-Binding Protein 2 in Response to PRRSV Infection. Vet Sci 2024; 11:392. [PMID: 39330771 PMCID: PMC11435751 DOI: 10.3390/vetsci11090392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) has caused substantial damage to the pig industry. MicroRNAs (miRNAs) were found to play crucial roles in modulating the pathogenesis of PRRS virus (PRRSV). In the present study, we revealed that PRRSV induced let-7f-5p to influence lipid metabolism to regulate PRRSV pathogenesis. A transcriptome analysis of PRRSV-infected PK15CD163 cells transfected with let-7f-5p mimics or negative control (NC) generated 1718 differentially expressed genes, which were primarily associated with lipid metabolism processes. Furthermore, the master regulator of lipogenesis SREBP2 was found to be directly targeted by let-7f-5p using a dual-luciferase reporter system and Western blotting. The findings demonstrate that let-7f-5p modulates lipogenesis by targeting SREBP2, providing novel insights into miRNA-mediated PRRSV pathogenesis and offering a potential antiviral therapeutic target.
Collapse
Affiliation(s)
- Dongfeng Jiang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Liyu Yang
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Xiangge Meng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiuliang Xu
- College of Animal Science and Technology, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
- Henan Institute of Pig Biotech Breeding, Zhengzhou 450046, China
| | - Xiang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Bang Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- The Engineering Technology Research Center of Hubei Province Local Pig Breed Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
3
|
Jiao P, Lu H, Hao L, Degen AA, Cheng J, Yin Z, Mao S, Xue Y. Nutrigenetic and Epigenetic Mechanisms of Maternal Nutrition-Induced Glucolipid Metabolism Changes in the Offspring. Nutr Rev 2024:nuae048. [PMID: 38781288 DOI: 10.1093/nutrit/nuae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Maternal nutrition during pregnancy regulates the offspring's metabolic homeostasis, including insulin sensitivity and the metabolism of glucose and lipids. The fetus undergoes a crucial period of plasticity in the uterus; metabolic changes in the fetus during pregnancy caused by maternal nutrition not only influence fetal growth and development but also have a long-term or even life-long impact for the offspring. Epigenetic modifications, such as DNA methylation, histone modification, and non-coding RNAs, play important roles in intergenerational and transgenerational effects. In this context, this narrative review comprehensively summarizes and analyzes the molecular mechanisms underlying how maternal nutrition, including a high-fat diet, polyunsaturated fatty acid diet, methyl donor nutrient supplementation, feed restriction, and protein restriction during pregnancy, impacts the genes involved in glucolipid metabolism in the liver, adipose tissue, hypothalamus, muscle, and oocytes of the offspring in terms of the epigenetic modifications. This will provide a foundation for the further exploration of nutrigenetic and epigenetic mechanisms for integrative mother-child nutrition and promotion of the offspring's health through the regulation of maternal nutrition during pregnancy. Note: This paper is part of the Nutrition Reviews Special Collection on Precision Nutrition.
Collapse
Affiliation(s)
- Peng Jiao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Huizhen Lu
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Lizhuang Hao
- Key Laboratory of Plateau Grazing Animal Nutrition and Feed Science of Qinghai Province, Qinghai Plateau Yak Research Center, Qinghai Academy of Science and Veterinary Medicine of Qinghai University, Xining, China
| | - A Allan Degen
- Desert Animal Adaptations and Husbandry, Wyler Department of Dryland Agriculture, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jianbo Cheng
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Zongjun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Shengyong Mao
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yanfeng Xue
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Mezo-González CE, García-Santillán JA, Kaeffer B, Gourdel M, Croyal M, Bolaños-Jiménez F. Adult rats sired by obese fathers present learning deficits associated with epigenetic and neurochemical alterations linked to impaired brain glutamatergic signaling. Acta Physiol (Oxf) 2024; 240:e14090. [PMID: 38230587 DOI: 10.1111/apha.14090] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/10/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
AIM Offspring of obese mothers are at high risk of developing metabolic syndrome and cognitive disabilities. Impaired metabolism has also been reported in the offspring of obese fathers. However, whether brain function can also be affected by paternal obesity has barely been examined. This study aimed to characterize the learning deficits resulting from paternal obesity versus those induced by maternal obesity and to identify the underlying mechanisms. METHODS Founder control and obese female and male Wistar rats were mated to constitute three first-generation (F1) experimental groups: control mother/control father, obese mother/control father, and obese father/control mother. All F1 animals were weaned onto standard chow and underwent a learning test at 4 months of age, after which several markers of glutamate-mediated synaptic plasticity together with the expression of miRNAs targeting glutamate receptors and the concentration of kynurenic and quinolinic acids were quantified in the hippocampus and frontal cortex. RESULTS Maternal obesity induced a severe learning deficit by impairing memory encoding and memory consolidation. The offspring of obese fathers also showed reduced memory encoding but not impaired long-term memory formation. Memory deficits in offspring of obese fathers and obese mothers were associated with a down-regulation of genes encoding NMDA glutamate receptors subunits and several learning-related genes along with impaired expression of miR-296 and miR-146b and increased concentration of kynurenic acid. CONCLUSION Paternal and maternal obesity impair offspring's learning abilities by affecting different processes of memory formation. These cognitive deficits are associated with epigenetic and neurochemical alterations leading to impaired glutamate-mediated synaptic plasticity.
Collapse
Affiliation(s)
| | | | - Bertrad Kaeffer
- UMR Physiologie des Adaptations Nutritionnelles, INRAE - Nantes Université, Nantes, France
| | - Mathilde Gourdel
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
- CNRS, INSERM, L'institut du Thorax, Université de Nantes, Nantes, France
- CHU Nantes, INSERM, CNRS, SFR Santé, INSERM UMS 016, CNRS UMS 3556, Université de Nantes, Nantes, France
| | - Mikaël Croyal
- CRNH-O Mass Spectrometry Core Facility, Nantes, France
- CNRS, INSERM, L'institut du Thorax, Université de Nantes, Nantes, France
- CHU Nantes, INSERM, CNRS, SFR Santé, INSERM UMS 016, CNRS UMS 3556, Université de Nantes, Nantes, France
| | | |
Collapse
|
5
|
Zhang J, Srivatsa P, Ahmadzai FH, Liu Y, Song X, Karpatne A, Kong ZJ, Johnson BN. Improving biosensor accuracy and speed using dynamic signal change and theory-guided deep learning. Biosens Bioelectron 2024; 246:115829. [PMID: 38008059 DOI: 10.1016/j.bios.2023.115829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/14/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
False results and time delay are longstanding challenges in biosensing. While classification models and deep learning may provide new opportunities for improving biosensor performance, such as measurement confidence and speed, it remains a challenge to ensure that predictions are explainable and consistent with domain knowledge. Here, we show that consistency of deep learning classification model predictions with domain knowledge in biosensing can be achieved by cost function supervision and enables rapid and accurate biosensing using the biosensor dynamic response. The impact and utility of the methodology were validated by rapid and accurate quantification of microRNA (let-7a) across the nanomolar (nM) to femtomolar (fM) concentration range using the dynamic response of cantilever biosensors. Data augmentation and cost function supervision based on the consistency of model predictions and experimental observations with the theory of surface-based biosensors improved the F1 score, precision, and recall of a recurrent neural network (RNN) classifier by an average of 13.8%. The theory-guided RNN (TGRNN) classifier enabled quantification of target analyte concentration and false results with an average prediction accuracy, precision, and recall of 98.5% using the initial transient or entire dynamic response, which is indicative of high prediction accuracy and low probability of false-negative and false-positive results. Classification scores were used to establish new relationships among biosensor performance characteristics (e.g., measurement confidence) and design parameters (e.g., inputs and hyperparameters of classification models and data acquisition parameters) that may be used for characterizing biosensor performance.
Collapse
Affiliation(s)
- Junru Zhang
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Purna Srivatsa
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Fazel Haq Ahmadzai
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Yang Liu
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Xuerui Song
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Anuj Karpatne
- Department of Computer Science, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Zhenyu James Kong
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Blake N Johnson
- Grado Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; School of Neuroscience, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
6
|
Zhang J, Srivatsa P, Ahmadzai FH, Liu Y, Song X, Karpatne A, Kong Z, Johnson BN. Reduction of Biosensor False Responses and Time Delay Using Dynamic Response and Theory-Guided Machine Learning. ACS Sens 2023; 8:4079-4090. [PMID: 37931911 PMCID: PMC10683760 DOI: 10.1021/acssensors.3c01258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023]
Abstract
Here, we provide a new methodology for reducing false results and time delay of biosensors, which are barriers to industrial, healthcare, military, and consumer applications. We show that integrating machine learning with domain knowledge in biosensing can complement and improve the biosensor accuracy and speed relative to the performance achieved by traditional regression analysis of a standard curve based on the biosensor steady-state response. The methodology was validated by rapid and accurate quantification of microRNA across the nanomolar to femtomolar range using the dynamic response of cantilever biosensors. Theory-guided feature engineering improved the performance and efficiency of several classification models relative to the performance achieved using traditional feature engineering methods (TSFRESH). In addition to the entire dynamic response, the technique enabled rapid and accurate quantification of the target analyte concentration and false-positive and false-negative results using the initial transient response, thereby reducing the required data acquisition time (i.e., time delay). We show that model explainability can be achieved by combining theory-guided feature engineering and feature importance analysis. The performance of multiple classifiers using both TSFRESH- and theory-based features from the biosensor's initial transient response was similar to that achieved using the entire dynamic response with data augmentation. We also show that the methodology can guide design of experiments for high-performance biosensing applications, specifically, the selection of data acquisition parameters (e.g., time) based on potential application-dependent performance thresholds. This work provides an example of the opportunities for improving biosensor performance, such as reducing biosensor false results and time delay, using explainable machine learning models supervised by domain knowledge in biosensing.
Collapse
Affiliation(s)
- Junru Zhang
- Grado
Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Purna Srivatsa
- Department
of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Fazel Haq Ahmadzai
- Grado
Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yang Liu
- Grado
Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- School
of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Xuerui Song
- Grado
Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Anuj Karpatne
- Department
of Computer Science, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Zhenyu Kong
- Grado
Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Blake N. Johnson
- Grado
Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- School
of Neuroscience, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department
of Materials Science and Engineering, Virginia
Tech, Blacksburg, Virginia 24061, United States
- Department
of Chemical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
7
|
Garofalo G, Nielsen T, Caito S. Expression Profiling of Adipogenic and Anti-Adipogenic MicroRNA Sequences following Methylmercury Exposure in Caenorhabditis elegans. TOXICS 2023; 11:934. [PMID: 37999587 PMCID: PMC10674990 DOI: 10.3390/toxics11110934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
MicroRNA (miRNA) are important regulators of gene expression that respond not only to developmental and pathological cues, but also to environmental stimuli. Dyslipidemia is a hallmark of metabolic conditions and has been shown to significantly affect the expression of circulating miRNA sequences. Recently, our lab has shown that the environmental toxicant methylmercury (MeHg) causes dyslipidemia in the Caenorhabditis elegans model organism. While 10 and 20 μM MeHg increases the expression of adipogenic transcription factors and lipid-binding proteins in worms, there is limited information on how the toxicant affects the miRNA regulators of these genes. We hypothesized that MeHg would increase the expression of adipogenic miRNA sequences and/or decrease the expression of anti-adipogenic miRNA sequences. We further hypothesized that the target mRNA sequences for the miRNAs affected by MeHg would be consequently altered. We selected three potentially adipogenic (mir-34, mir-124, and mir-355) and three potentially anti-adipogenic (mir-240, mir-786, and let-7) miRNA sequences homologous to known human miRNA sequences altered in obesity, and quantified their levels 24 h and 48 h post MeHg treatment. At 24 h post exposure, MeHg significantly increased expression of both the adipogenic and anti-adipogenic miRNA sequences 1.5-3x above untreated control. By 48 h post exposure, only the adipogenic miRNA sequences were elevated, while the anti-adipogenic miRNA sequences were decreased by 50% compared to untreated control. These data suggest that there are developmental changes in miRNA expression over time following MeHg exposure. We next selected one target mRNA sequence for each miRNA sequence based on miRNA-mRNA relationships observed in humans. MeHg altered the gene expression of all the target genes assayed. Except for mir-34, all the tested miRNA-mRNA sequences showed a conserved relationship between nematode and humans. To determine whether the selected miRNA sequences were involved in lipid accumulation in response to MeHg, lipid storage was investigated in transgenic worm strains that lacked the specific miRNA strains. Of the six strains investigated, only the mir-124 and let-7 mutant worms had lipid storage levels that were statistically different from wild type, suggesting that these two sequences can be potential mediators of MeHg-induced lipid dysregulation.
Collapse
Affiliation(s)
| | | | - Samuel Caito
- Department of Pharmaceutical Sciences, Husson University School of Pharmacy, Bangor, ME 04401, USA
| |
Collapse
|
8
|
Sharma S, Bhonde R. Dilemma of Epigenetic Changes Causing or Reducing Metabolic Disorders in Offsprings of Obese Mothers. Horm Metab Res 2023; 55:665-676. [PMID: 37813098 DOI: 10.1055/a-2159-9128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Maternal obesity is associated with fetal complications predisposing later to the development of metabolic syndrome during childhood and adult stages. High-fat diet seems to influence individuals and their subsequent generations in mediating weight gain, insulin resistance, obesity, high cholesterol, diabetes, and cardiovascular disorder. Research evidence strongly suggests that epigenetic alteration is the major contributor to the development of metabolic syndrome through DNA methylation, histone modifications, and microRNA expression. In this review, we have discussed the outcome of recent studies on the adverse and beneficial effects of nutrients and vitamins through epigenetics during pregnancy. We have further discussed about the miRNAs altered during maternal obesity. Identification of new epigenetic modifiers such as mesenchymal stem cells condition media (MSCs-CM)/exosomes for accelerating the reversal of epigenetic abnormalities for the development of new treatments is yet another aspect of the present review.
Collapse
Affiliation(s)
- Shikha Sharma
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ramesh Bhonde
- Stem Cells and Regenerative Medicine, Dr. D. Y. Patil Vidyapeeth Pune (Deemed University), Pune, India
| |
Collapse
|
9
|
Sun H, Kemper JK. MicroRNA regulation of AMPK in nonalcoholic fatty liver disease. Exp Mol Med 2023; 55:1974-1981. [PMID: 37653034 PMCID: PMC10545736 DOI: 10.1038/s12276-023-01072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 09/02/2023] Open
Abstract
Obesity-associated nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease and is the leading cause of liver failure and death. The function of AMP-activated protein kinase (AMPK), a master energy sensor, is aberrantly reduced in NAFLD, but the underlying mechanisms are not fully understood. Increasing evidence indicates that aberrantly expressed microRNAs (miRs) are associated with impaired AMPK function in obesity and NAFLD. In this review, we discuss the emerging evidence that miRs have a role in reducing AMPK activity in NAFLD and nonalcoholic steatohepatitis (NASH), a severe form of NAFLD. We also discuss the underlying mechanisms of the aberrant expression of miRs that can negatively impact AMPK, as well as the therapeutic potential of targeting the miR-AMPK pathway for NAFLD/NASH.
Collapse
Affiliation(s)
- Hao Sun
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jongsook Kim Kemper
- Department of Molecular and Integrative Physiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
10
|
Simino LAP, Baqueiro MN, Panzarin C, Lopes PKF, Góis MM, Simabuco FM, Ignácio-Souza LM, Milanski M, Ross MG, Desai M, Torsoni AS, Torsoni MA. Hypothalamic α7 nicotinic acetylcholine receptor (α7nAChR) is downregulated by TNFα-induced Let-7 overexpression driven by fatty acids. FASEB J 2023; 37:e23120. [PMID: 37527279 DOI: 10.1096/fj.202300439rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
The α7nAChR is crucial to the anti-inflammatory reflex, and to the expression of neuropeptides that control food intake, but its expression can be decreased by environmental factors. We aimed to investigate whether microRNA modulation could be an underlying mechanism in the α7nAchR downregulation in mouse hypothalamus following a short-term exposure to an obesogenic diet. Bioinformatic analysis revealed Let-7 microRNAs as candidates to regulate Chrna7, which was confirmed by the luciferase assay. Mice exposed to an obesogenic diet for 3 days had increased Let-7a and decreased α7nAChR levels, accompanied by hypothalamic fatty acids and TNFα content. Hypothalamic neuronal cells exposed to fatty acids presented higher Let-7a and TNFα levels and lower Chrna7 expression, but when the cells were pre-treated with TLR4 inhibitor, Let-7a, TNFα, and Chrna7 were rescued to normal levels. Thus, the fatty acids overload trigger TNFα-induced Let-7 overexpression in hypothalamic neuronal cells, which negatively regulates α7nAChR, an event that can be related to hyperphagia and obesity predisposition in mice.
Collapse
Affiliation(s)
- Laís A P Simino
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mayara N Baqueiro
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Carolina Panzarin
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Priscilla K F Lopes
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mariana M Góis
- Multidisciplinary Laboratory of Food and Health (Labmas), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernando M Simabuco
- Multidisciplinary Laboratory of Food and Health (Labmas), School of Applied Sciences (FCA), University of Campinas (UNICAMP), Campinas, Brazil
| | - Letícia M Ignácio-Souza
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Michael G Ross
- The Lundquist Institute, David Geffen School of Medicine at Harbor - UCLA Medical Center, UCLA, Los Angeles, California, USA
| | - Mina Desai
- The Lundquist Institute, David Geffen School of Medicine at Harbor - UCLA Medical Center, UCLA, Los Angeles, California, USA
| | - Adriana S Torsoni
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| | - Marcio A Torsoni
- Laboratory of Metabolic Disorders (Labdime), School of Applied Sciences, University of Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
11
|
Otsuka K, Nishiyama H, Kuriki D, Kawada N, Ochiya T. Connecting the dots in the associations between diet, obesity, cancer, and microRNAs. Semin Cancer Biol 2023; 93:52-69. [PMID: 37156343 DOI: 10.1016/j.semcancer.2023.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/10/2023]
Abstract
The prevalence of obesity has reached pandemic levels worldwide, leading to a lower quality of life and higher health costs. Obesity is a major risk factor for noncommunicable diseases, including cancer, although obesity is one of the major preventable causes of cancer. Lifestyle factors, such as dietary quality and patterns, are also closely related to the onset and development of obesity and cancer. However, the mechanisms underlying the complex association between diet, obesity, and cancer remain unclear. In the past few decades, microRNAs (miRNAs), a class of small non-coding RNAs, have been demonstrated to play critical roles in biological processes such as cell differentiation, proliferation, and metabolism, highlighting their importance in disease development and suppression and as therapeutic targets. miRNA expression levels can be modulated by diet and are involved in cancer and obesity-related diseases. Circulating miRNAs can also mediate cell-to-cell communications. These multiple aspects of miRNAs present challenges in understanding and integrating their mechanism of action. Here, we introduce a general consideration of the associations between diet, obesity, and cancer and review the current knowledge of the molecular functions of miRNA in each context. A comprehensive understanding of the interplay between diet, obesity, and cancer could be valuable for the development of effective preventive and therapeutic strategies in future.
Collapse
Affiliation(s)
- Kurataka Otsuka
- Tokyo NODAI Research Institure, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo 156-8502, Japan; R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan; Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan; Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, 5-1-1, Tsukiji, Chuo-ku, Tokyo 104-0045, Japan.
| | - Hiroshi Nishiyama
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Daisuke Kuriki
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Naoki Kawada
- R&D Division, Kewpie Corporation, 2-5-7, Sengawa-cho, Chofu-shi, Tokyo 182-0002, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, 6-7-1, Nishishinjyuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
12
|
Zhu Y, Tan JK, Wong SK, Goon JA. Therapeutic Effects of microRNAs on Nonalcoholic Fatty Liver Disease (NAFLD) and Nonalcoholic Steatohepatitis (NASH): A Systematic Review and Meta-Analysis. Int J Mol Sci 2023; 24:ijms24119168. [PMID: 37298120 DOI: 10.3390/ijms24119168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 06/12/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has emerged as a global health problem that affects people even at young ages due to unhealthy lifestyles. Without intervention, NAFLD will develop into nonalcoholic steatohepatitis (NASH) and eventually liver cirrhosis and hepatocellular carcinoma. Although lifestyle interventions are therapeutic, effective implementation remains challenging. In the efforts to establish effective treatment for NAFLD/NASH, microRNA (miRNA)-based therapies began to evolve in the last decade. Therefore, this systematic review aims to summarize current knowledge on the promising miRNA-based approaches in NAFLD/NASH therapies. A current systematic evaluation and a meta-analysis were conducted according to the PRISMA statement. In addition, a comprehensive exploration of PubMed, Cochrane, and Scopus databases was conducted to perform article searches. A total of 56 different miRNAs were reported as potential therapeutic agents in these studies. miRNA-34a antagonist/inhibitor was found to be the most studied variant (n = 7), and it significantly improved the hepatic total cholesterol, total triglyceride, Aspartate Aminotransferase (AST), and Alanine Transaminase (ALT) levels based on a meta-analysis. The biological processes mediated by these miRNAs involved hepatic fat accumulation, inflammation, and fibrosis. miRNAs have shown enormous therapeutic potential in the management of NAFLD/NASH, wherein miRNA-34a antagonist has been found to be an exceptional potential agent for the treatment of NAFLD/NASH.
Collapse
Affiliation(s)
- Yuezhi Zhu
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jen Kit Tan
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
13
|
Purcell AR, Glastras SJ. Maternal Weight Management to Prevent the Developmental Programming of MAFLD in Offspring of Obese Mothers. Nutrients 2023; 15:2155. [PMID: 37432265 DOI: 10.3390/nu15092155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 07/12/2023] Open
Abstract
The global surge of obesity amongst women of reproductive age has raised concerns surrounding the health consequences for their offspring as there is a formidable link between an obesogenic maternal environment and the developmental programming of metabolic dysfunction in the offspring. Specifically, the offspring of mothers with obesity have a three-fold higher risk of developing metabolic-associated fatty liver disease (MAFLD) compared to the offspring of healthy-weight mothers. Given the burgeoning burden of obesity and its comorbidities, it is essential to focus research efforts on methods to alleviate the intergenerational onset of obesity and MAFLD. This review summarizes the current research surrounding the developmental programming of MAFLD in the offspring of mothers with obesity and examines the potential for weight interventions to prevent such metabolic dysfunction in the offspring. It focuses on the benefits of pre-pregnancy interventional strategies, including dietary and exercise intervention, to ameliorate adverse liver health outcomes in the offspring. The utility and translation of these interventions for humans may be difficult for prospective mothers with obesity, thus the use of pre-pregnancy therapeutic weight loss aids, such as glucagon-like peptide-1 receptor agonists, is also discussed.
Collapse
Affiliation(s)
- Amanda Renae Purcell
- Kolling Institute of Medical Research, Sydney 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
| | - Sarah Jean Glastras
- Kolling Institute of Medical Research, Sydney 2065, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney 2006, Australia
- Department of Diabetes, Endocrinology and Metabolism, Royal North Shore Hospital, Sydney 2065, Australia
| |
Collapse
|
14
|
Characterization of Maternal Circulating MicroRNAs in Obese Pregnancies and Gestational Diabetes Mellitus. Antioxidants (Basel) 2023; 12:antiox12020515. [PMID: 36830073 PMCID: PMC9952647 DOI: 10.3390/antiox12020515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Maternal obesity (MO) is expanding worldwide, contributing to the onset of Gestational Diabetes Mellitus (GDM). MO and GDM are associated with adverse maternal and foetal outcomes, with short- and long-term complications. Growing evidence suggests that MO and GDM are characterized by epigenetic alterations contributing to the pathogenesis of metabolic diseases. In this pilot study, plasma microRNAs (miRNAs) of obese pregnant women with/without GDM were profiled at delivery. Nineteen women with spontaneous singleton pregnancies delivering by elective Caesarean section were enrolled: seven normal-weight (NW), six obese without comorbidities (OB/GDM(-)), and six obese with GDM (OB/GDM(+)). miRNA profiling with miRCURY LNA PCR Panel allowed the analysis of the 179 most expressed circulating miRNAs in humans. Data acquisition and statistics (GeneGlobe and SPSS software) and Pathway Enrichment Analysis (PEA) were performed. Data analysis highlighted patterns of significantly differentially expressed miRNAs between groups: OB/GDM(-) vs. NW: n = 4 miRNAs, OB/GDM(+) vs. NW: n = 1, and OB/GDM(+) vs. OB/GDM(-): n = 14. For each comparison, PEA revealed pathways associated with oxidative stress and inflammation, as well as with nutrients and hormones metabolism. Indeed, miRNAs analysis may help to shed light on the complex epigenetic network regulating metabolic pathways in both the mother and the foeto-placental unit. Future investigations are needed to deepen the pregnancy epigenetic landscape in MO and GDM.
Collapse
|
15
|
Santos SAA, Portela LMF, Camargo ACL, Constantino FB, Colombelli KT, Fioretto MN, Mattos R, de Almeida Fantinatti BE, Denti MA, Piazza S, Felisbino SL, Zambrano E, Justulin LA. miR-18a-5p Is Involved in the Developmental Origin of Prostate Cancer in Maternally Malnourished Offspring Rats: A DOHaD Approach. Int J Mol Sci 2022; 23:14855. [PMID: 36499183 PMCID: PMC9739077 DOI: 10.3390/ijms232314855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 12/02/2022] Open
Abstract
The Developmental Origins of Health and Disease (DOHaD) concept correlates early life exposure to stressor conditions with the increased incidence of non-communicable chronic diseases, including prostate cancer (PCa), throughout the life span. However, the molecular mechanisms involved in this process remain poorly understood. In this study, the deregulation of two miRNAs (rno-miR-18a-5p and rno-miR-345-3p) was described in the ventral prostate VP of old rats born to dams fed with a low protein diet (LPD) (6% protein in the diet) during gestational and lactational periods. Integrative analysis of the (VP) transcriptomic and proteomic data revealed changes in the expression profile of 14 identified predicted targets of these two DE miRNAs, which enriched terms related to post-translational protein modification, metabolism of proteins, protein processing in endoplasmic reticulum, phosphonate and phosphinate metabolism, the calnexin/calreticulin cycle, metabolic pathways, N-glycan trimming in the ER and the calnexin/calreticulin cycle, hedgehog ligand biogenesis, the ER-phagosome pathway, detoxification of reactive oxygen species, antigenprocessing-cross presentation, RAB geranylgeranylation, collagen formation, glutathione metabolism, the metabolism of xenobiotics by cytochrome P450, and platinum drug resistance. RT-qPCR validated the deregulation of the miR-18a-5p/P4HB (prolyl 4-hydroxylase subunit beta) network in the VP of older offspring as well as in the PNT-2 cells transfected with mimic miR-18a-5p. Functional in vitro studies revealed a potential modulation of estrogen receptor α (ESR1) by miR-18a-5p in PNT-2 cells, which was also confirmed in the VP of older offspring. An imbalance of the testosterone/estrogen ratio was also observed in the offspring rats born to dams fed with an LPD. In conclusion, deregulation of the miR-18a-5p/P4HB network can contribute to the developmental origins of prostate cancer in maternally malnourished offspring, highlighting the need for improving maternal healthcare during critical windows of vulnerability early in life.
Collapse
Affiliation(s)
- Sergio Alexandre Alcantara Santos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
- Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Luiz Marcos Frediani Portela
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Ana Carolina Lima Camargo
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Flavia Bessi Constantino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Ketlin Thassiani Colombelli
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Renato Mattos
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Bruno Evaristo de Almeida Fantinatti
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Michela Alessandra Denti
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Silvano Piazza
- Department of Cellular, Computational and Integrative Biology—CIBIO, University of Trento, 38123 Trento, Italy
| | - Sérgio Luis Felisbino
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición, Salvador Zubirán, Mexico City 14080, Mexico
| | - Luis Antonio Justulin
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University (UNESP), Unesp Botucatu, Botucatu 18618-689, SP, Brazil
| |
Collapse
|
16
|
Zeng Y, Wu Y, Zhang Q, Xiao X. Non-coding RNAs: The link between maternal malnutrition and offspring metabolism. Front Nutr 2022; 9:1022784. [DOI: 10.3389/fnut.2022.1022784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
Early life nutrition is associated with the development and metabolism in later life, which is known as the Developmental Origin of Health and Diseases (DOHaD). Epigenetics have been proposed as an important explanation for this link between early life malnutrition and long-term diseases. Non-coding RNAs (ncRNAs) may play a role in this epigenetic programming. The expression of ncRNAs (such as long non-coding RNA H19, microRNA-122, and circular RNA-SETD2) was significantly altered in specific tissues of offspring exposed to maternal malnutrition. Changes in these downstream targets of ncRNAs lead to abnormal development and metabolism. This review aims to summarize the existing knowledge on ncRNAs linking the maternal nutrition condition and offspring metabolic diseases, such as obesity, type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD).
Collapse
|
17
|
Ponsuksili S, Murani E, Hadlich F, Iqbal MA, Fuchs B, Galuska CE, Perdomo-Sabogal A, Sarais F, Trakooljul N, Reyer H, Oster M, Wimmers K. Prenatal transcript levels and metabolomics analyses reveal metabolic changes associated with intrauterine growth restriction and sex. Open Biol 2022; 12:220151. [PMID: 36102059 PMCID: PMC9471991 DOI: 10.1098/rsob.220151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The metabolic changes associated with intrauterine growth restriction (IUGR) particularly affect the liver, which is a central metabolic organ and contributes significantly to the provision of energy and specific nutrients and metabolites. Therefore, our aim was to decipher and elucidate the molecular pathways of developmental processes mediated by miRNAs and mRNAs, as well as the metabolome in fetal liver tissue in IUGR compared to appropriate for gestational age groups (AGA). Discordant siblings representing the extremes in fetal weight at day 63 post conception (dpc) were selected from F2 fetuses of a cross of German Landrace and Pietrain. Most of the changes in the liver of IUGR at midgestation involved various lipid metabolic pathways, both on transcript and metabolite levels, especially in the category of sphingolipids and phospholipids. Differentially expressed miRNAs, such as miR-34a, and their differentially expressed mRNA targets were identified. Sex-specific phenomena were observed at both the transcript and metabolite levels, particularly in male. This suggests that sex-specific adaptations in the metabolic system occur in the liver during midgestation (63 dpc). Our multi-omics network analysis reveals interactions and changes in the metabolic system associated with IUGR and identified an important biosignature that differs between IUGR and AGA piglets.
Collapse
Affiliation(s)
- Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Eduard Murani
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Frieder Hadlich
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Muhammad Arsalan Iqbal
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Beate Fuchs
- Research Institute for Farm Animal Biology (FBN), Core Facility Metabolomics, 18196 Dummerstorf, Germany
| | - Christina E Galuska
- Research Institute for Farm Animal Biology (FBN), Core Facility Metabolomics, 18196 Dummerstorf, Germany
| | - Alvaro Perdomo-Sabogal
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Fabio Sarais
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.,Faculty of Agricultural and Environmental Sciences, University Rostock, 18059 Rostock, Germany
| |
Collapse
|
18
|
Simino LADP, Fontana MF, de Fante T, Panzarin C, Ignacio-Souza LM, Milanski M, Torsoni MA, Desai M, Ross MG, Torsoni AS. Hepatic Epigenetic Reprogramming After Liver Resection in Offspring Alleviates the Effects of Maternal Obesity. Front Cell Dev Biol 2022; 10:830009. [PMID: 35433669 PMCID: PMC9009519 DOI: 10.3389/fcell.2022.830009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Obesity has become a public health problem in recent decades, and during pregnancy, it can lead to an increased risk of gestational complications and permanent changes in the offspring resulting from a process known as metabolic programming. The offspring of obese dams are at increased risk of developing non-alcoholic fatty liver disease (NAFLD), even in the absence of high-fat diet consumption. NAFLD is a chronic fatty liver disease that can progress to extremely severe conditions that require surgical intervention with the removal of the injured tissue. Liver regeneration is necessary to preserve organ function. A range of pathways is activated in the liver regeneration process, including the Hippo, TGFβ, and AMPK signaling pathways that are under epigenetic control. We investigated whether microRNA modulation in the liver of the offspring of obese dams would impact gene expression of Hippo, TGFβ, and AMPK pathways and tissue regeneration after partial hepatectomy (PHx). Female Swiss mice fed a standard chow or a high-fat diet (HFD) before and during pregnancy and lactation were mated with male control mice. The offspring from control (CT-O) and obese (HF-O) dams weaned to standard chow diet until day 56 were submitted to PHx surgery. Prior to the surgery, HF-O presented alterations in miR-122, miR-370, and Let-7a expression in the liver compared to CT-O, as previously shown, as well as in its target genes involved in liver regeneration. However, after the PHx (4 h or 48 h post-surgery), differences in gene expression between CT-O and HF-O were suppressed, as well as in microRNA expression in the liver. Furthermore, both CT-O and HF-O presented a similar regenerative capacity of the liver within 48 h after PHx. Our results suggest that survival and regenerative mechanisms induced by the partial hepatectomy may overcome the epigenetic changes in the liver of offspring programmed by maternal obesity.
Collapse
Affiliation(s)
- Lais A. de Paula Simino
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Marina Figueiredo Fontana
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Thais de Fante
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Carolina Panzarin
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | | | - Marciane Milanski
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Marcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
| | - Mina Desai
- The Lundquist Institute and David Geffen School of Medicine at Harbor-UCLA Medical Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael G. Ross
- The Lundquist Institute and David Geffen School of Medicine at Harbor-UCLA Medical Center, University of California, Los Angeles, Los Angeles, CA, United States
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas—UNICAMP, Limeira, Brazil
- *Correspondence: Adriana Souza Torsoni,
| |
Collapse
|
19
|
Sanches APV, de Oliveira JL, Ferreira MS, Lima BDS, Miyamoto JÉ, Simino LADP, Torsoni MA, Torsoni AS, Milanski M, Ignácio-Souza LM. Obesity phenotype induced by high-fat diet leads to maternal-fetal constraint, placental inefficiency, and fetal growth restriction in mice. J Nutr Biochem 2022; 104:108977. [PMID: 35248701 DOI: 10.1016/j.jnutbio.2022.108977] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 11/20/2021] [Accepted: 02/09/2022] [Indexed: 11/28/2022]
Abstract
The aim of this study was to investigate certain parameters regarding the maternal-fetal outcomes in a diet-induced obesity model. Obese, glucose-intolerant females who were exposed to a high-fat diet prior to pregnancy had lower placental efficiency and lower birth weight pups compared to the controls. Simple linear regression analyses showed that maternal obesity disrupts the proportionality between maternal and fetal outcomes during pregnancy. Maternal obesity is correlated with fetal outcomes, perhaps because of problems with hormonal signaling and exacerbation of inflammation in the maternal metabolic environment. The maternal obese phenotype altered the thickness of the placental layer, the transport of fatty acids, and the expression of growth factors. For example, lower expression of epidermal growth factor receptor (EGFR) mRNA in the obesity-prone group may have contributed to the rupture of the placental layers, leading to adverse fetal outcomes. Furthermore, maintenance of maternal glucose homeostasis and overexpression of placental growth factor (PGF) in the obesity-resistant group likely protected the placenta and fetuses from morphological and functional damage.
Collapse
Affiliation(s)
- Ana Paula Varela Sanches
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, Limeira, São Paulo, Brazil
| | - Josilene Lopes de Oliveira
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, Limeira, São Paulo, Brazil
| | - Maíra Schuchter Ferreira
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, Limeira, São Paulo, Brazil
| | - Bruna de Souza Lima
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, Limeira, São Paulo, Brazil
| | - Josiane Érica Miyamoto
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, Limeira, São Paulo, Brazil
| | - Laís Angélica de Paula Simino
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, Limeira, São Paulo, Brazil
| | - Márcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, Limeira, São Paulo, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, Limeira, São Paulo, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, Limeira, São Paulo, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Letícia Martins Ignácio-Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, Limeira, São Paulo, Brazil; Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil.
| |
Collapse
|
20
|
Panzarin C, Simino LADP, Mancini MCS, Ignácio-Souza LM, Milanski M, Torsoni MA, Torsoni AS. Hepatic microRNA modulation might be an early event to non-alcoholic fatty liver disease development driven by high-fat diet in male mice. Mol Biol Rep 2022; 49:2655-2666. [PMID: 35048271 DOI: 10.1007/s11033-021-07072-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022]
Abstract
INTRODUCTION Metabolic alterations caused by an imbalance of macronutrient consumption are often related to the modulation of microRNAs (miRNAs), which could alter mRNAs expression profile and accelerate the development of non-alcoholic fatty liver disease (NAFLD). AIMS This study aimed to investigate the contribution of miRNAs in modulating early stages of NAFLD in mice submitted to a high-fat diet (HFD). METHODS AND RESULTS Male Swiss mice, fed either a control diet or an HFD for 1, 3, 7, 15, 30, 56 days, were assessed for metabolic alterations, gene expression and NAFLD markers. A hepatocyte cell line was used to investigate the effects of miR-370 modulation on enzymes involved in β-oxidation. Body weight and adiposity were higher after 7 days of HFD. Fasting glucose and insulin increased after 3 and 7 days of HFD, respectively. While hepatic lipid content increased from the first day on, hepatic glycogen had a decrease after 3 days of HFD consumption. miR-370 and Let-7 expression increased with acute and chronic exposure to HFD, accompanied by carnitine palmitoyltransferase 1A (Cpt1a), acyl-CoA dehydrogenase very long chain (Acadvl) and protein kinase AMP-activated Catalytic Subunit 2 (Prkaa2) downregulation, while decreased miR-122 expression was accompanied by 1-acylglycerol-3-phosphate-O-acyltransferase (Agpat) upregulation after 56 days of HFD consumption, some of them confirmed by in vitro experiments. Despite fluctuations in TNFa and IL6 mRNA levels, molecular modulation was consistent with hepatic TG and NAFLD development. CONCLUSION Hepatic miR-370-122-Let7 miRNA modulation could be the first insult to NAFLD development, preceding changes in glycemic homeostasis and adiposity.
Collapse
Affiliation(s)
- Carolina Panzarin
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, 1300, Pedro Zaccaria St, Limeira, São Paulo, 13484-350, Brazil
| | - Laís Angélica de Paula Simino
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, 1300, Pedro Zaccaria St, Limeira, São Paulo, 13484-350, Brazil
| | - Mariana Camargo Silva Mancini
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, 1300, Pedro Zaccaria St, Limeira, São Paulo, 13484-350, Brazil
| | - Leticia Martins Ignácio-Souza
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, 1300, Pedro Zaccaria St, Limeira, São Paulo, 13484-350, Brazil
| | - Marciane Milanski
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, 1300, Pedro Zaccaria St, Limeira, São Paulo, 13484-350, Brazil
| | - Márcio Alberto Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, 1300, Pedro Zaccaria St, Limeira, São Paulo, 13484-350, Brazil
| | - Adriana Souza Torsoni
- Laboratory of Metabolic Disorders, School of Applied Sciences, University of Campinas - UNICAMP, 1300, Pedro Zaccaria St, Limeira, São Paulo, 13484-350, Brazil.
| |
Collapse
|
21
|
Changes in microRNA expression profiles in diabetic cardiomyopathy rats following H3 relaxin treatment. J Cardiovasc Pharmacol 2021; 79:530-538. [PMID: 34983906 DOI: 10.1097/fjc.0000000000001211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/06/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT MicroRNAs (miRNAs) are noncoding RNAs that play an important role in the mechanisms of diabetic cardiomyopathy (DCM); however, whether human recombinant relaxin-3 (H3 relaxin) inhibits myocardial injury in DCM rats and the underlying mechanisms involving miRNAs remain unknown. miRNA expression profiles were detected using miRNA microarray and bioinformatics analyses of myocardial tissues from control, DCM, and H3 relaxin-administered DCM groups, and the regulatory mechanisms of the miRNAs were investigated. A total of five miRNAs were downregulated in the myocardial tissues of DCM rats and upregulated in H3 relaxin-treated DCM rats, and one miRNA (miRNA let-7d-3p) was increased in the myocardial tissue of DCM rats, and decreased in H3 relaxin-treated DCM rats as revealed by miRNA microarray and validated by real-time PCR. Important signaling pathways were found to be triggered by the differentially expressed miRNAs, including metabolism, cancer, Rap1, PI3K-Akt, and MAPK signaling pathways. The study revealed that H3 relaxin improved glucose uptake in DCM rats, potentially via regulation of miRNA let-7d-3p.
Collapse
|
22
|
Li CH, Liao CC. The Metabolism Reprogramming of microRNA Let-7-Mediated Glycolysis Contributes to Autophagy and Tumor Progression. Int J Mol Sci 2021; 23:113. [PMID: 35008539 PMCID: PMC8745176 DOI: 10.3390/ijms23010113] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/17/2021] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer is usually a result of abnormal glucose uptake and imbalanced nutrient metabolization. The dysregulation of glucose metabolism, which controls the processes of glycolysis, gives rise to various physiological defects. Autophagy is one of the metabolic-related cellular functions and involves not only energy regeneration but also tumorigenesis. The dysregulation of autophagy impacts on the imbalance of metabolic homeostasis and leads to a variety of disorders. In particular, the microRNA (miRNA) Let-7 has been identified as related to glycolysis procedures such as tissue repair, stem cell-derived cardiomyocytes, and tumoral metastasis. In many cancers, the expression of glycolysis-related enzymes is correlated with Let-7, in which multiple enzymes are related to the regulation of the autophagy process. However, much recent research has not comprehensively investigated how Let-7 participates in glycolytic reprogramming or its links to autophagic regulations, mainly in tumor progression. Through an integrated literature review and omics-related profiling correlation, this review provides the possible linkage of the Let-7 network between glycolysis and autophagy, and its role in tumor progression.
Collapse
Affiliation(s)
- Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan;
| | - Chiao-Chun Liao
- Department of Tropical Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Institute of Public Health and Department of Social Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| |
Collapse
|
23
|
Vulf M, Shunkina D, Komar A, Bograya M, Zatolokin P, Kirienkova E, Gazatova N, Kozlov I, Litvinova L. Analysis of miRNAs Profiles in Serum of Patients With Steatosis and Steatohepatitis. Front Cell Dev Biol 2021; 9:736677. [PMID: 34568346 PMCID: PMC8458751 DOI: 10.3389/fcell.2021.736677] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is emerging as one of the most common chronic liver diseases worldwide, affecting 25% of the world population. In recent years, there has been increasing evidence for the involvement of microRNAs in the epigenetic regulation of genes taking part in the development of steatosis and steatohepatitis—two main stages of NAFLD pathogenesis. In the present study, miRNA profiles were studied in groups of patients with steatosis and steatohepatitis to compare the characteristics of RNA-dependent epigenetic regulation of the stages of NAFLD development. According to the results of miRNA screening, 23 miRNAs were differentially expressed serum in a group of patients with steatohepatitis and 2 in a group of patients with steatosis. MiR-195-5p and miR-16-5p are common differentially expressed miRNAs for both steatosis and steatohepatitis. We analyzed the obtained results: the search for target genes for the differentially expressed miRNAs in our study and the subsequent gene set enrichment analysis performed on KEGG and REACTOME databases revealed which metabolic pathways undergo changes in RNA-dependent epigenetic regulation in steatosis and steatohepatitis. New findings within the framework of this study are the dysregulation of neurohumoral pathways in the pathogenesis of NAFLD as an object of changes in RNA-dependent epigenetic regulation. The miRNAs differentially expressed in our study were found to target 7% of genes in the classic pathogenesis of NAFLD in the group of patients with steatosis and 50% in the group of patients with steatohepatitis. The effects of these microRNAs on genes for the pathogenesis of NAFLD were analyzed in detail. MiR-374a-5p, miR-1-3p and miR-23a-3p do not target genes directly involved in the pathogenesis of NAFLD. The differentially expressed miRNAs found in this study target genes largely responsible for mitochondrial function. The role of miR-423-5p, miR-143-5p and miR-200c-3 in regulating apoptotic processes in the liver and hepatocarcinogenesis is of interest for future experimental studies. These miR-374a, miR-143, miR-1, miR-23a, and miR-423 have potential for steatohepatitis diagnosis and are poorly studied in the context of NAFLD. Thus, this work opens up prospects for further studies of microRNAs as diagnostic and therapeutic biomarkers for NAFLD.
Collapse
Affiliation(s)
- Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Daria Shunkina
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Aleksandra Komar
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Bograya
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Pavel Zatolokin
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Elena Kirienkova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Natalia Gazatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Ivan Kozlov
- Department of Organization and Management in the Sphere of Circulation of Medicines, Institute of Postgraduate Education, I.M. Sechenov Federal State Autonomous Educational University of Higher Education-First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| |
Collapse
|