1
|
Verni M, Wang Y, Clement H, Koirala P, Rizzello CG, Coda R. Antifungal peptides from faba bean flour fermented by Levilactobacillus brevis AM7 improve the shelf-life of composite faba-wheat bread. Int J Food Microbiol 2023; 407:110403. [PMID: 37748395 DOI: 10.1016/j.ijfoodmicro.2023.110403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/12/2023] [Accepted: 07/20/2023] [Indexed: 09/27/2023]
Affiliation(s)
- Michela Verni
- Department of Environmental Biology, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Yaqin Wang
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Heliciane Clement
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Prabin Koirala
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland
| | - Carlo Giuseppe Rizzello
- Department of Environmental Biology, "Sapienza" University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Rossana Coda
- Department of Food and Nutrition, University of Helsinki, Helsinki, Finland; Helsinki Institute of Sustainability Science, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Molecular level characterization of the effect of roasting on the extractable components of glandless cottonseed by Fourier transform ion cyclotron resonance mass spectrometry. Food Chem 2023; 403:134404. [DOI: 10.1016/j.foodchem.2022.134404] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 11/21/2022]
|
3
|
Oxidative Stability of Cottonseed Butter Products under Accelerated Storage Conditions. Molecules 2023; 28:molecules28041599. [PMID: 36838586 PMCID: PMC9963269 DOI: 10.3390/molecules28041599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Cottonseed is a natural product of cotton (Gossypium spp.) crops. This work evaluated the oxidative stability of cottonseed butters through accelerated autoxidation by storage at 60 °C for 25 days. Three oxidative stability parameter values (peroxide value, p-anisidine value, and total oxidation value) were monitored over the storage time. These chemical measurements revealed that the storage stability of the butter products was dominated by primary oxidation of lipid (oil) components, while the secondary oxidation levels were relatively unchanged over the storage time. An analysis of the tocopherols (natural oxidants in cottonseed) suggested not only the protection function of the molecules against oxidation of the cottonseed butter during storage, but also the dynamic mechanism against the primary oxidation of lipid components. Attenuated total reflectance-Fourier-transform infrared spectroscopy (ATR-FTIR) data confirmed no changes in the major C functional groups of cottonseed butters over the storage time. On the other hand, characteristic minor peaks of conjugated dienes and trienes related to lipid oxidation were impacted by the accelerated storage. As each day of accelerated oxidation at 60 °C is equivalent to 16 days of storage at 20 °C, observations in this work should have reflected the oxidative stability behaviors of the cottonseed butters after about 13 months of shelf storage under ambient storage conditions. Thus, these data that were collected under the accelerated oxidation testing would be useful not only to create a better understanding of the autooxidation mechanism of lipid molecules in cottonseed butters, but also in developing or recommending appropriate storage conditions for cottonseed end products to prevent them from quality degradation.
Collapse
|
4
|
Mattison CP, He Z, Zhang D, Dupre R, Lloyd SW. Cross-Serological Reaction of Glandless Cottonseed Proteins to Peanut and Tree Nut Allergic IgE. Molecules 2023; 28:molecules28041587. [PMID: 36838575 PMCID: PMC9967559 DOI: 10.3390/molecules28041587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/18/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Food allergy is a potentially life-threatening health concern caused by immunoglobulin E (IgE) antibodies that mistakenly recognize normally harmless food proteins as threats. Peanuts and tree nuts contain several seed storage proteins that commonly act as allergens. Glandless cottonseed, lacking the toxic compound gossypol, is a new food source. However, the seed storage proteins in cottonseed may act as allergens. To assess this risk, glandless cottonseed protein extracts were evaluated for IgE binding by peanut and tree nut allergic volunteers. ELISA demonstrated that 25% of 32 samples had significant binding to cottonseed extracts. Immunoblot analysis with pooled sera indicated that IgE recognized a pair of bands migrating at approximately 50 kDa. Excision of these bands and subsequent mass-spectrometric analysis demonstrated peptide matches to cotton C72 and GC72 vicilin and legumin A and B proteins. Further, in silico analysis indicated similarity of the cotton vicilin and legumin proteins to peanut vicilin (Ara h 1) and cashew nut legumin (Ana o 2) IgE-binding epitopes among others. The observations suggest both the cotton vicilin and legumin proteins were recognized by the nut allergic IgE, and they should be considered for future allergen risk assessments evaluating glandless cottonseed protein products.
Collapse
Affiliation(s)
- Christopher P. Mattison
- USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, USA
- Correspondence: (C.P.M.); (Z.H.); Tel.: +1-(504)-286-4392 (C.P.M.)
| | - Zhongqi He
- USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, USA
- Correspondence: (C.P.M.); (Z.H.); Tel.: +1-(504)-286-4392 (C.P.M.)
| | - Dunhua Zhang
- USDA-ARS, Aquatic Animal Health Research Unit, Auburn, AL 36832, USA
| | - Rebecca Dupre
- USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, USA
- Oak Ridge Institute for Science and Education, U.S. Department of Energy, Oak Ridge, TN 37831, USA
| | - Steven W. Lloyd
- USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124, USA
| |
Collapse
|
5
|
Initial Formulation of Novel Peanut Butter-like Products from Glandless Cottonseed. Foods 2023; 12:foods12020378. [PMID: 36673470 PMCID: PMC9858556 DOI: 10.3390/foods12020378] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Glandless (Gl) cottonseed is a unique cotton variety with only a trace content of toxic gossypol present. This new cottonseed raises the potential of its enhanced utilization as an agro-food for human consumption. In this work, Gl cottonseed kernels were used with additional cottonseed oil to produce novel peanut butter-like products. Kernels roasted at two temperatures (140 or 150 °C) for a given time (15 or 30 min) were first ground with different ratios of cottonseed oil and two other ingredients (i.e., salt and sugar) with a food blender, and then passed through a meat grinder with a 4-mm-hole grinding plate. Per the preliminary result, the butter-like products with Gl kernels roasted at 150 °C were subject to further structural and textural evaluation. The color of the two butter-like products was comparable to a commercial peanut butter, but the formers’ textural properties were significantly different (p ≤ 0.05) from the latter. Morphologic examination by Scanning Electron Microscopy (SEM) and cryo-SEM revealed that the butter product with a longer (30 min) roasting time possessed a smoother surface than the products with a shorter (15 min) roasting time. Oil stability test showed no substantial oil separation (<3%) from the butter products over 7 weeks at ambient temperature (22 °C). This work provides the basic information and parameters for lab cottonseed butter making so that optimization and characterization of cottonseed butter formation can be designed and performed in future research.
Collapse
|
6
|
Kumar M, Hasan M, Choyal P, Tomar M, Gupta OP, Sasi M, Changan S, Lorenzo JM, Singh S, Sampathrajan V, Dhumal S, Pandiselvam R, Sharma K, Satankar V, Waghmare R, Senapathy M, Sayed AA, Radha, Dey A, Amarowicz R, Kennedy JF. Cottonseed feedstock as a source of plant-based protein and bioactive peptides: Evidence based on biofunctionalities and industrial applications. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
Ateeq M, Adeel MM, Kanwal A, Tahir ul Qamar M, Saeed A, Khaliq B, Saeed Q, Atiq MN, Bilal M, Alharbi M, Alshammari A, Akrem A. In Silico Analysis and Functional Characterization of Antimicrobial and Insecticidal Vicilin from Moth Bean ( Vigna aconitifolia (Jacq.) Marechal) Seeds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103251. [PMID: 35630727 PMCID: PMC9145308 DOI: 10.3390/molecules27103251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/28/2023]
Abstract
Vicilin has nutraceutical potential and different noteworthy medicative health-promoting biotic diversions, and it is remarkable against pathogenic microorganisms and insects. In this study, Vigna aconitifolia vicilin (VacV) has been identified and characterized from the seed of Vigna aconitifolia (Jacq.) Marechal (Moth beans). LC-MS/MS analysis of VacV provided seven random fragmented sequences comprising 238 residues, showing significant homology with already reported Vigna radiata vicilin (VraV). VacV was purified using ammonium sulfate precipitation (60%) followed by size exclusion chromatography on Hi-Load 16/60 Superdex 200 pg column and anion-exchange chromatography (Hi trap Q FF column). Purified VacV showed a major ~50 kDa band and multiple lower bands on 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under both reduced and non-reduced conditions. After all, a three-dimensional molecular structure of VacV was predicted, which showed β-sheeted molecular conformation similar to crystallographic structure of VraV. All Vicilins from V. aconitifolia and other plants were divided into six sub-groups by phylogenetic analysis, and VacV shared a high degree of similarity with vicilins of Vigna radiata, Pisum sativum, Lupinus albus, Cicer arietinum and Glycine max. Additionally, VacV (20 μg) has significant growth inhibition against different pathogenic bacteria along strong antifungal activity (50 μg). Likewise, VacV (3.0 mg) produced significant growth reduction in Rice Weevil Sitophilus oryzae larvae after 9 days compared with control. Furthermore, by using MMT assay, the cytotoxicity effect of VacV on the growth of HepG2 liver cancerous cells was tested. VacV showed cytotoxicity against the HepG-2 line and the acquired value was 180 µg after 48 h. Finally, we performed molecular docking against caspase-3 protein (PDB ID: 3DEI) for VacV bioactive receptor interface residues. Hence, our results reveal that VacV, has nutraceutical potential and moth beans can be used as a rich resource of functional foods.
Collapse
Affiliation(s)
- Muhammad Ateeq
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China;
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muhammad Muzammal Adeel
- Hubei Provincial Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China;
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Ayesha Kanwal
- College of Life Sciences, University of Science and Technology of China, Hefei 230027, China;
| | - Muhammad Tahir ul Qamar
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
- Correspondence: (M.H.); (A.A.)
| | - Ahsan Saeed
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Binish Khaliq
- Department of Botany, Faculty of Life Science, University of Okara, Okara 56300, Pakistan;
| | - Qamar Saeed
- Department of Entomology, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Muhammad Nauman Atiq
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Muhammad Bilal
- Centre of Excellence in Molecular Biology, University of the Punjab, 87-West Canal Road Thokar Niaz Baig, Lahore 53700, Pakistan;
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; (M.T.u.Q.); (A.A.)
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P. O. Box 2455, Riyadh 11451, Saudi Arabia; (M.T.u.Q.); (A.A.)
| | - Ahmed Akrem
- Botany Division, Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan 60800, Pakistan;
- Correspondence: (M.H.); (A.A.)
| |
Collapse
|
8
|
Chemical Composition and Thermogravimetric Behaviors of Glanded and Glandless Cottonseed Kernels. Molecules 2022; 27:molecules27010316. [PMID: 35011547 PMCID: PMC8747074 DOI: 10.3390/molecules27010316] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/28/2021] [Accepted: 01/02/2022] [Indexed: 11/17/2022] Open
Abstract
Common “glanded” (Gd) cottonseeds contain the toxic compound gossypol that restricts human consumption of the derived products. The “glandless” (Gl) cottonseeds of a new cotton variety, in contrast, show a trace gossypol content, indicating the great potential of cottonseed for agro-food applications. This work comparatively evaluated the chemical composition and thermogravimetric behaviors of the two types of cottonseed kernels. In contrast to the high gossypol content (3.75 g kg−1) observed in Gd kernels, the gossypol level detected in Gl kernels was only 0.06 g kg−1, meeting the FDA’s criteria as human food. While the gossypol gland dots in Gd kernels were visually observed, scanning electron microcopy was not able to distinguish the microstructural difference between ground Gd and Gl samples. Chemical analysis and Fourier transform infrared (FTIR) spectroscopy showed that Gl kernels and Gd kernels had similar chemical components and mineral contents, but the former was slightly higher in protein, starch, and phosphorus contents. Thermogravimetric (TG) processes of both kernels and their residues after hexane and ethanol extraction were based on three stages of drying, de-volatilization, and char formation. TG-FTIR analysis revealed apparent spectral differences between Gd and Gl samples, as well as between raw and extracted cottonseed kernel samples, indicating that some components in Gd kernels were more susceptible to thermal decomposition than Gl kernels. The TG and TG-FTIR observations suggested that the Gl kernels could be heat treated (e.g., frying and roasting) at an optimal temperature of 140–150 °C for food applications. On the other hand, optimal pyrolysis temperatures would be much higher (350–500 °C) for Gd cottonseed and its defatted residues for non-food bio-oil and biochar production. The findings from this research enhance the potential utilization of Gd and Gl cottonseed kernels for food applications.
Collapse
|