1
|
Višnić A, Čanadi Jurešić G, Domitrović R, Klarić M, Šepić TS, Barišić D. Proteins in urine - Possible biomarkers of endometriosis. J Reprod Immunol 2023; 157:103941. [PMID: 36948095 DOI: 10.1016/j.jri.2023.103941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
In the pathogenesis of endometriosis, a number of pathological reactions occur. Proteins secreted in the urine are thought to interact with each other and stimulate the pathological processes in endometriosis. Identifying one or more proteins that are specific enough and could serve as biomarkers for endometriosis is both a challenge and a necessity that would facilitate diagnosis. The urine of patients treated in a tertiary university hospital between July 1, 2020 and June 30, 2021 was analyzed. The studied group consists of patients who were treated surgically for endometriosis and in whom the diagnosis was confirmed by pathohistological analysis. The control group consists of patients who were operated for functional ovarian cysts. Urinary proteins were analyzed by chromatography and mass spectrometry (LC-MS/MS). We identified 17 proteins in urine whose concentrations were statistically significantly different in the group with endometriosis (N = 16) compared with the control groups (N = 16). The detected proteins were classified into groups according to their function in invasion, migration and proliferation, proteolysis, immune system, cell adhesion and vascular system. For all mentioned proteins the difference in concentration is statistically significant p < 0.005. Proteins are secreted in the urine of patients with endometriosis that may be involved in the pathogenesis of the disease and are possible biomarkers for endometriosis.
Collapse
Affiliation(s)
- Alenka Višnić
- Clinical Hospital Center Rijeka, Clinic for Gynecology and Obstetrics, Rijeka, Croatia
| | - Gordana Čanadi Jurešić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University in Rijeka, Rijeka, Croatia.
| | - Robert Domitrović
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, University in Rijeka, Rijeka, Croatia
| | - Marko Klarić
- Clinical Hospital Center Rijeka, Clinic for Gynecology and Obstetrics, Rijeka, Croatia
| | - Tina Sušanj Šepić
- Clinical Hospital Center Rijeka, Clinic for Gynecology and Obstetrics, Rijeka, Croatia
| | | |
Collapse
|
2
|
Kriseman ML, Tang S, Liao Z, Jiang P, Parks SE, Cope DI, Yuan F, Chen F, Masand RP, Castro PD, Ittmann MM, Creighton CJ, Tan Z, Monsivais D. SMAD2/3 signaling in the uterine epithelium controls endometrial cell homeostasis and regeneration. Commun Biol 2023; 6:261. [PMID: 36906706 PMCID: PMC10008566 DOI: 10.1038/s42003-023-04619-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
The regenerative potential of the endometrium is attributed to endometrial stem cells; however, the signaling pathways controlling its regenerative potential remain obscure. In this study, genetic mouse models and endometrial organoids are used to demonstrate that SMAD2/3 signaling controls endometrial regeneration and differentiation. Mice with conditional deletion of SMAD2/3 in the uterine epithelium using Lactoferrin-iCre develop endometrial hyperplasia at 12-weeks and metastatic uterine tumors by 9-months of age. Mechanistic studies in endometrial organoids determine that genetic or pharmacological inhibition of SMAD2/3 signaling disrupts organoid morphology, increases the glandular and secretory cell markers, FOXA2 and MUC1, and alters the genome-wide distribution of SMAD4. Transcriptomic profiling of the organoids reveals elevated pathways involved in stem cell regeneration and differentiation such as the bone morphogenetic protein (BMP) and retinoic acid signaling (RA) pathways. Therefore, TGFβ family signaling via SMAD2/3 controls signaling networks which are integral for endometrial cell regeneration and differentiation.
Collapse
Affiliation(s)
- Maya L Kriseman
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Reproductive Endocrinology and Infertility, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Suni Tang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zian Liao
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Peixin Jiang
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, the University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sydney E Parks
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Dominique I Cope
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fei Yuan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Fengju Chen
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ramya P Masand
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patricia D Castro
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael M Ittmann
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Zhi Tan
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Cancer and Cell Biology Program, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
The Mature COC Promotes the Ampullary NPPC Required for Sperm Release from Porcine Oviduct Cells. Int J Mol Sci 2023; 24:ijms24043118. [PMID: 36834527 PMCID: PMC9967908 DOI: 10.3390/ijms24043118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/13/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023] Open
Abstract
Porcine spermatozoa are stored in the oviductal isthmus after natural mating, and the number of spermatozoa is increased in the oviductal ampulla when the mature cumulus-oocyte complexes (COCs) are transferred into the ampulla. However, the mechanism is unclear. Herein, natriuretic peptide type C (NPPC) was mainly expressed in porcine ampullary epithelial cells, whereas its cognate receptor natriuretic peptide receptor 2 (NPR2) was located on the neck and the midpiece of porcine spermatozoa. NPPC increased sperm motility and intracellular Ca2+ levels, and induced sperm release from oviduct isthmic cell aggregates. These actions of NPPC were blocked by the cyclic guanosine monophosphate (cGMP)-sensitive cyclic nucleotide-gated (CNG) channel inhibitor l-cis-Diltiazem. Moreover, porcine COCs acquired the ability to promote NPPC expression in the ampullary epithelial cells when the immature COCs were induced to maturation by epidermal growth factor (EGF). Simultaneously, transforming growth factor-β ligand 1 (TGFB1) levels were dramatically increased in the cumulus cells of the mature COCs. The addition of TGFB1 promoted NPPC expression in the ampullary epithelial cells, and the mature COC-induced NPPC was blocked by the transforming growth factor-β type 1 receptor (TGFBR1) inhibitor SD208. Taken together, the mature COCs promote NPPC expression in the ampullae via TGF-β signaling, and NPPC is required for the release of porcine spermatozoa from the oviduct isthmic cells.
Collapse
|
4
|
Jia S, Wilbourne J, Crossen MJ, Zhao F. Morphogenesis of the female reproductive tract along antero-posterior and dorso-ventral axes is dependent on Amhr2+ mesenchyme in mice†. Biol Reprod 2022; 107:1477-1489. [PMID: 36130202 PMCID: PMC9752753 DOI: 10.1093/biolre/ioac179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/11/2022] [Accepted: 09/15/2022] [Indexed: 12/24/2022] Open
Abstract
Morphogenesis of the female reproductive tract is regulated by the mesenchyme. However, the identity of the mesenchymal lineage that directs the morphogenesis of the female reproductive tract has not been determined. Using in vivo genetic cell ablation, we identified Amhr2+ mesenchyme as an essential mesenchymal population in patterning the female reproductive tract. After partial ablation of Amhr2+ mesenchymal cells, the oviduct failed to develop its characteristic coiling due to decreased epithelial proliferation and tubule elongation during development. The uterus displayed a reduction in size and showed decreased cellular proliferation in both epithelial and mesenchymal compartments. More importantly, in the uterus, partial ablation of Amhr2+ mesenchyme caused abnormal lumen shape and altered the direction of its long axis from the dorsal-ventral axis to the left-right axis (i.e., perpendicular to the dorsal-ventral axis). Despite these morphological defects, epithelia underwent normal differentiation into secretory and ciliated cells in the oviduct and glandular epithelial cells in the uterus. These results demonstrated that Amhr2+ mesenchyme can direct female reproductive tract morphogenesis by regulating epithelial proliferation and lumen shape without affecting the differentiation of epithelial cell types.
Collapse
Affiliation(s)
- Shuai Jia
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jillian Wilbourne
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - McKenna J Crossen
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Fei Zhao
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Wang Z, Wei H, Wu Z, Zhang X, Sun Y, Gao L, Zhang W, Su YQ, Zhang M. The oocyte cumulus complex regulates mouse sperm migration in the oviduct. Commun Biol 2022; 5:1327. [PMID: 36463362 PMCID: PMC9719508 DOI: 10.1038/s42003-022-04287-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
As the time of ovulation draws near, mouse spermatozoa move out of the isthmic reservoir, which is a prerequisite for fertilization. However, the molecular mechanism remains unclear. The present study revealed that mouse cumulus cells of oocytes-cumulus complexes (OCCs) expressed transforming growth factor-β ligand 1 (TGFB1), whereas ampullary epithelial cells expressed the TGF-β receptors, TGFBR1 and TGFBR2, and all were upregulated by luteinizing hormone (LH)/human chorionic gonadotropin (hCG). OCCs and TGFB1 increased natriuretic peptide type C (NPPC) expression in cultured ampullae via TGF-β signaling, and NPPC treatment promoted spermatozoa moving out of the isthmic reservoir of the preovulatory oviducts. Deletion of Tgfb1 in cumulus cells and Tgfbr2 in ampullary epithelial cells blocked OCC-induced NPPC expression and spermatozoa moving out of the isthmic reservoir, resulting in compromised fertilization and fertility. Oocyte-derived paracrine factors were required for promoting cumulus cell expression of TGFB1. Therefore, oocyte-dependent and cumulus cell-derived TGFB1 promotes the expression of NPPC in oviductal ampulla, which is critical for sperm migration in the oviduct and subsequent fertilization.
Collapse
Affiliation(s)
- Zhijuan Wang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Hongwei Wei
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Zhanying Wu
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Xiaodan Zhang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Yanli Sun
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Longwei Gao
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - Wenqing Zhang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| | - You-Qiang Su
- grid.27255.370000 0004 1761 1174Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, 266237 P. R. China
| | - Meijia Zhang
- grid.79703.3a0000 0004 1764 3838Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou, 510006 P. R. China
| |
Collapse
|
6
|
Chen SY, Schenkel FS, Melo ALP, Oliveira HR, Pedrosa VB, Araujo AC, Melka MG, Brito LF. Identifying pleiotropic variants and candidate genes for fertility and reproduction traits in Holstein cattle via association studies based on imputed whole-genome sequence genotypes. BMC Genomics 2022; 23:331. [PMID: 35484513 PMCID: PMC9052698 DOI: 10.1186/s12864-022-08555-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 04/12/2022] [Indexed: 02/06/2023] Open
Abstract
Background Genetic progress for fertility and reproduction traits in dairy cattle has been limited due to the low heritability of most indicator traits. Moreover, most of the quantitative trait loci (QTL) and candidate genes associated with these traits remain unknown. In this study, we used 5.6 million imputed DNA sequence variants (single nucleotide polymorphisms, SNPs) for genome-wide association studies (GWAS) of 18 fertility and reproduction traits in Holstein cattle. Aiming to identify pleiotropic variants and increase detection power, multiple-trait analyses were performed using a method to efficiently combine the estimated SNP effects of single-trait GWAS based on a chi-square statistic. Results There were 87, 72, and 84 significant SNPs identified for heifer, cow, and sire traits, respectively, which showed a wide and distinct distribution across the genome, suggesting that they have relatively distinct polygenic nature. The biological functions of immune response and fatty acid metabolism were significantly enriched for the 184 and 124 positional candidate genes identified for heifer and cow traits, respectively. No known biological function was significantly enriched for the 147 positional candidate genes found for sire traits. The most important chromosomes that had three or more significant QTL identified are BTA22 and BTA23 for heifer traits, BTA8 and BTA17 for cow traits, and BTA4, BTA7, BTA17, BTA22, BTA25, and BTA28 for sire traits. Several novel and biologically important positional candidate genes were strongly suggested for heifer (SOD2, WTAP, DLEC1, PFKFB4, TRIM27, HECW1, DNAH17, and ADAM3A), cow (ANXA1, PCSK5, SPESP1, and JMJD1C), and sire (ELMO1, CFAP70, SOX30, DGCR8, SEPTIN14, PAPOLB, JMJD1C, and NELL2) traits. Conclusions These findings contribute to better understand the underlying biological mechanisms of fertility and reproduction traits measured in heifers, cows, and sires, which may contribute to improve genomic evaluation for these traits in dairy cattle. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08555-z.
Collapse
Affiliation(s)
- Shi-Yi Chen
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ana L P Melo
- Department of Reproduction and Animal Evaluation, Rural Federal University of Rio de Janeiro, Seropédica, RJ, 23897-000, Brazil
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA.,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Victor B Pedrosa
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA.,Department of Animal Sciences, State University of Ponta Grossa, Ponta Grossa, PR, 84030-900, Brazil
| | - Andre C Araujo
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA
| | - Melkaye G Melka
- Department of Animal and Food Science, University of Wisconsin River Falls, River Falls, WI, 54022, USA
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, 270 S. Russell Street, West Lafayette, IN, 47907-2041, USA. .,Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
7
|
Histological changes and transglutaminase 2 expression in the oviduct of advanced pregnant cows. Reprod Biol 2022; 22:100616. [DOI: 10.1016/j.repbio.2022.100616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 11/30/2022]
|