1
|
Jahanvar M, Zahri S, Abdolmaleki A, Asadi A. Evaluation of decellularized sheep kidney scaffolds for renal tissue engineering: Biocompatibility and stem cell differentiation potential. Tissue Cell 2024; 91:102594. [PMID: 39531858 DOI: 10.1016/j.tice.2024.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/14/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Tissue engineering (TE) combines scaffolds, cells, and bioactive chemicals in order to create tissues. The objective is to restore or sustain tissue functionality and expedite the recovery of damaged tissues or organs in a controlled laboratory environment. This study aimed to evaluate the properties and biocompatibility of decellularized sheep kidney scaffolds (DKS) and to explore the differentiation potential of adipose-derived mesenchymal stem cells (ADSCs) into renal cells. After decellularizing sheep kidneys using freeze-drying and detergent techniques, we conducted histological studies, DNA quantification, and ultrastructural evaluations using scanning electron microscopy (SEM). Furthermore, to assay the feasibility and attachment of stem cells to the decellularized scaffolds, ADSCs were cultured on the scaffolds and subjected to the MTT assay. The expression of the pax2 gene was analyzed using real-time PCR to determine the differentiation of MSCs into kidney cells. DNA quantitation revealed a significant reduction in the quantity of DNA present in the scaffold tissue compared to the control kidney tissue. Ultrastructural examination confirmed the preservation of the decellularized scaffold's ultrastructure. Histological analysis demonstrated the complete removal of nuclear material from the scaffold. Additionally, Pax2 gene expression was significantly increased in ADSC cells cultured on the scaffold compared to the control group. The results demonstrate that the produced scaffolds are well-suited for regenerative medicine, exhibiting excellent biocompatibility and providing a conducive environment for the differentiation of ADSCs.
Collapse
Affiliation(s)
- Maryam Jahanvar
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Saber Zahri
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
| | - Arash Abdolmaleki
- Department of Biophysics, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran
| | - Asadollah Asadi
- Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran
| |
Collapse
|
2
|
Hu J, Yang H, Wang X, Ding J, Liao P, Zhu G, Qi C. A novel pathogenic variant c.262delA in PBX1 causing oligomeganephronia identified using whole-exome sequencing and a literature review. Am J Med Genet A 2023; 191:2850-2855. [PMID: 37571997 DOI: 10.1002/ajmg.a.63364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/14/2023]
Abstract
Oligomeganephronia (OMN) is a rare congenital renal hypoplasia reported more often in children than in adults. The diagnosis of OMN relies on renal biopsy and exhibits a significant reduction in the number of glomeruli and pronounced glomerular hypertrophy. Here, we report the case of an 8-year-old boy with recurrent proteinuria and abnormal external ears. A renal biopsy revealed large and rare glomeruli. The histological findings confirmed the diagnosis of OMN. Whole-exome sequencing of the patient revealed a new pathogenic variant in PBX1 (hg19, NM_002585, c.262delA, p.Thr88Glnfs*3). The PBX1 gene encodes a transcription factor whose pathogenic variants can result in congenital renal and urinary system anomalies, with or without hearing loss, abnormal ears, and developmental retardation (CAKUTED). This is the first report to detect PBX1 pathogenic variants in children with OMN, a novel phenotype of human PBX1 pathogenic variants. We performed functional prediction analyses of deletions in the corresponding structural domains. We summarized 27 cases of PBX1 single pathogenic variants reported between 2003 and 2023 in terms of truncating and missense pathogenic variants, which can deepen our understanding of the PBX1 structural domain and expand our knowledge of the PBX1 genotype and phenotype.
Collapse
Affiliation(s)
- Jiaxin Hu
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huihui Yang
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaowen Wang
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juanjuan Ding
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Panli Liao
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gaohong Zhu
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chang Qi
- Department of Nephrology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Muntean C, Chirtes C, Baczoni B, Banescu C. PAX2 Gene Mutation in Pediatric Renal Disorders-A Narrative Review. Int J Mol Sci 2023; 24:12737. [PMID: 37628926 PMCID: PMC10454596 DOI: 10.3390/ijms241612737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The PAX2 gene is a transcription factor that is essential for the development of the urinary system among other transcription factors. The role of PAX2 is highlighted from the seventh week of gestation, when it is involved in development processes and the emergence of nephrons and collecting tubes. Being an important factor in renal development, mutations of this gene can produce severe alterations in the development of the urinary tract, namely congenital anomalies of the kidneys and urinary tract. The first reported cases described with the PAX2 mutation included both renal anomalies and the involvement of other organs, such as the eyes, producing renal coloboma syndrome. Over the years, numerous cases have been reported, including those with only renal and urinary tract anomalies. The aim of this review is to present a summary of pediatric patients described to have mutations in the PAX2 gene to contribute to a better understanding of the genetic mechanism causing anomalies of the kidneys and urinary tract. In this review, we have included only pediatric cases with renal and urinary tract disorders, without the involvement of other organs. From what we know so far from the literature, this is the first review gathering pediatric patients presenting the PAX2 mutation who have been diagnosed exclusively with renal and urinary tract disorders.
Collapse
Affiliation(s)
- Carmen Muntean
- Department of Pediatrics I, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania;
| | - Camelia Chirtes
- Laboratory of Genetics, Department of Genetics, Emergency County Hospital, 540142 Targu Mures, Romania; (C.C.); (B.B.)
| | - Balazs Baczoni
- Laboratory of Genetics, Department of Genetics, Emergency County Hospital, 540142 Targu Mures, Romania; (C.C.); (B.B.)
| | - Claudia Banescu
- Laboratory of Genetics, Department of Genetics, Emergency County Hospital, 540142 Targu Mures, Romania; (C.C.); (B.B.)
- Center for Advanced Medical and Pharmaceutical Research, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Targu Mures, Romania
| |
Collapse
|
4
|
Negrisolo S, Benetti E. PAX2 and CAKUT Phenotypes: Report on Two New Variants and a Review of Mutations from the Leiden Open Variation Database. Int J Mol Sci 2023; 24:ijms24044165. [PMID: 36835576 PMCID: PMC9962628 DOI: 10.3390/ijms24044165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
PAX2 is a transcription factor expressed during embryogenesis in the eye, ear, CNS, and genitourinary tract, and is one of the major regulators of kidney development. Mutations in this gene are associated with papillorenal syndrome (PAPRS), a genetic condition characterized by optic nerve dysplasia and renal hypo/dysplasia. In the last 28 years, many cohort studies and case reports highlighted PAX2's involvement in a large spectrum of kidney malformations and diseases, with or without eye abnormalities, defining the phenotypes associated with PAX2 variants as "PAX2-related disorders". Here, we reported two new sequence variations and reviewed PAX2 mutations annotated on the Leiden Open Variation Database 3.0. DNA was extracted from the peripheral blood of 53 pediatric patients with congenital abnormalities of the kidney and urinary tract (CAKUT). PAX2 gene-coding exonic and flanking intronic regions were sequenced with Sanger technology. Two unrelated patients and two twins carrying one known and two unknown PAX2 variations were observed. The frequency of PAX2-related disorders in this cohort was 5.8%, considering all CAKUT phenotypes (16.7% in the PAPRS phenotype and 2.5% in non-syndromic CAKUT). Although PAX2 mutations have a higher frequency in patients with PAPRS or non-syndromic renal hypoplasia, from the review of variants reported to date in LOVD3, PAX2-related disorders are detected in pediatric patients with other CAKUT phenotypes. In our study, only one patient had a CAKUT without an ocular phenotype, but his twin had both renal and ocular involvement, confirming the extreme inter- and intrafamilial phenotypic variability.
Collapse
Affiliation(s)
- Susanna Negrisolo
- Laboratory of Immunopathology and Molecular Biology of the Kidney, Department of Women’s and Children’s Health, University of Padova, 35127 Padua, Italy
- Pediatric Research Institute “IRP Città della Speranza”, 35127 Padua, Italy
- Correspondence:
| | - Elisa Benetti
- Laboratory of Immunopathology and Molecular Biology of the Kidney, Department of Women’s and Children’s Health, University of Padova, 35127 Padua, Italy
- Pediatric Research Institute “IRP Città della Speranza”, 35127 Padua, Italy
- Pediatric Nephrology, Department of Women’s and Children’s Health, Padua University Hospital, 35128 Padua, Italy
| |
Collapse
|
5
|
A Biomimetic Electrospun Membrane Supports the Differentiation and Maturation of Kidney Epithelium from Human Stem Cells. Bioengineering (Basel) 2022; 9:bioengineering9050188. [PMID: 35621466 PMCID: PMC9137565 DOI: 10.3390/bioengineering9050188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 11/28/2022] Open
Abstract
Podocytes derived from human induced pluripotent stem (hiPS) cells are enabling studies of kidney development and disease. However, many of these studies are carried out in traditional tissue culture plates that do not accurately recapitulate the molecular and mechanical features necessary for modeling tissue- and organ-level functionalities. Overcoming these limitations requires the design and application of tunable biomaterial scaffolds. Silk fibroin is an attractive biomaterial due to its biocompatibility and versatility, which include its ability to form hydrogels, sponge-like scaffolds, and electrospun fibers and membranes appropriate for tissue engineering and biomedical applications. In this study, we show that hiPS cells can be differentiated into post-mitotic kidney glomerular podocytes on electrospun silk fibroin membranes functionalized with laminin. The resulting podocytes remain viable and express high levels of podocyte-specific markers consistent with the mature cellular phenotype. The resulting podocytes were propagated for at least two weeks, enabling secondary cell-based applications and analyses. This study demonstrates for the first time that electrospun silk fibroin membrane can serve as a supportive biocompatible platform for human podocyte differentiation and propagation. We anticipate that the results of this study will pave the way for the use of electrospun membranes and other biomimetic scaffolds for kidney tissue engineering, including the development of co-culture systems and organs-on-chips microphysiological devices.
Collapse
|
6
|
Sako K, Furuichi K, Makiishi S, Yamamura Y, Okumura T, Le T, Kitajima S, Toyama T, Hara A, Iwata Y, Sakai N, Shimizu M, Niimura F, Matsusaka T, Kaneko S, Wada T. Cyclin-dependent kinase 4-related tubular epithelial cell proliferation is regulated by Paired box gene 2 in kidney ischemia-reperfusion injury. Kidney Int 2022; 102:45-57. [PMID: 35483529 DOI: 10.1016/j.kint.2022.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/08/2022] [Accepted: 03/09/2022] [Indexed: 12/20/2022]
Abstract
Paired box 2 (Pax2) is a transcription factor essential for kidney development and is reactivated in proximal tubular epithelial cells (PTECs) during recovery from kidney injury. However, the role of Pax2 in this process is still unknown. Here the role of Pax2 reactivation during injury was examined in the proliferation of PTECs using an ischemia-reperfusion injury (IRI) mouse model. Kidney proximal tubule-specific Pax2 conditional knockout mice were generated by mating kidney androgen-regulated protein-Cre and Pax2 flox mice. The degree of cell proliferation and fibrosis was assessed and a Pax2 inhibitor (EG1) was used to evaluate the role of Pax2 in the hypoxic condition of cultured PTECs (O2 5%, 24 hours). The number of Pax2-positive cells and Pax2 mRNA increased after IRI. Sirius red staining indicated that the area of interstitial fibrosis was significantly larger in knockout mice 14 days after IRI. The number of Ki-67-positive cells (an index of proliferation) was significantly lower in knockout than in wild-type mice after IRI, whereas the number of TUNEL-positive cells (an index of apoptotic cells) was significantly higher in knockout mice four days after IRI. Expression analyses of cell cycle-related genes showed that cyclin-dependent kinase 4 (CDK4) was significantly less expressed in the Pax2 knockout mice. In vitro data showed that the increase in CDK4 mRNA and protein expression induced by hypoxia was attenuated by EG1. Thus, Pax2 reactivation may be involved in PTEC proliferation by activating CDK4, thereby limiting kidney fibrosis.
Collapse
Affiliation(s)
- Keisuke Sako
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kengo Furuichi
- Department of Nephrology, School of Medicine, Kanazawa Medical University, Uchinada, Ishikawa, Japan
| | - Shohei Makiishi
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yuta Yamamura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Toshiya Okumura
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Thu Le
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Tadashi Toyama
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Environmental and Preventive Medicine, Faculty of Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yasunori Iwata
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan; Division of Infection Control, Kanazawa University, Kanazawa, Japan
| | - Norihiko Sakai
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Fumio Niimura
- Department of Pediatrics, School of Medicine, Tokai University, Isehara, Japan
| | - Taiji Matsusaka
- Department of Basic Medicine, School of Medicine, Tokai University, Isehara, Japan; Institute of Medical Science, Tokai University, Isehara, Japan
| | - Shuichi Kaneko
- Department of System Biology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Wada
- Department of Nephrology and Laboratory Medicine, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|