1
|
Souilmi Y, Wasef S, Williams MP, Conroy G, Bar I, Bover P, Dann J, Heiniger H, Llamas B, Ogbourne S, Archer M, Ballard JWO, Reed E, Tobler R, Koungoulos L, Walshe K, Wright JL, Balme J, O’Connor S, Cooper A, Mitchell KJ. Ancient genomes reveal over two thousand years of dingo population structure. Proc Natl Acad Sci U S A 2024; 121:e2407584121. [PMID: 38976766 PMCID: PMC11287250 DOI: 10.1073/pnas.2407584121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/04/2024] [Indexed: 07/10/2024] Open
Abstract
Dingoes are culturally and ecologically important free-living canids whose ancestors arrived in Australia over 3,000 B.P., likely transported by seafaring people. However, the early history of dingoes in Australia-including the number of founding populations and their routes of introduction-remains uncertain. This uncertainty arises partly from the complex and poorly understood relationship between modern dingoes and New Guinea singing dogs, and suspicions that post-Colonial hybridization has introduced recent domestic dog ancestry into the genomes of many wild dingo populations. In this study, we analyzed genome-wide data from nine ancient dingo specimens ranging in age from 400 to 2,746 y old, predating the introduction of domestic dogs to Australia by European colonists. We uncovered evidence that the continent-wide population structure observed in modern dingo populations had already emerged several thousand years ago. We also detected excess allele sharing between New Guinea singing dogs and ancient dingoes from coastal New South Wales (NSW) compared to ancient dingoes from southern Australia, irrespective of any post-Colonial hybrid ancestry in the genomes of modern individuals. Our results are consistent with several demographic scenarios, including a scenario where the ancestry of dingoes from the east coast of Australia results from at least two waves of migration from source populations with varying affinities to New Guinea singing dogs. We also contribute to the growing body of evidence that modern dingoes derive little genomic ancestry from post-Colonial hybridization with other domestic dog lineages, instead descending primarily from ancient canids introduced to Sahul thousands of years ago.
Collapse
Affiliation(s)
- Yassine Souilmi
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- The Environment Institute, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Sally Wasef
- Ancient DNA Facility, Defence Genomics, Genomics Research Centre, Queensland University of Technology, Kelvin Grove, QLD4059, Australia
- Innovation Division, Forensic Science Queensland, Queensland Health, Coopers Plains, QLD4108, Australia
| | - Matthew P. Williams
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Department of Biology, The Pennsylvania State University, State College, PA16802
| | - Gabriel Conroy
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
| | - Ido Bar
- Centre for Planetary Health and Food Security, School of Environment and Science, Griffith University, Nathan, QLD4111, Australia
| | - Pere Bover
- Fundación Agencia Aragonesa para la Investigacióny el Desarrollo (ARAID), Zaragoza50018, Spain
- Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA)-Grupo Aragosaurus, Universidad de Zaragoza, Zaragoza50009, Spain
| | - Jackson Dann
- Grützner Laboratory of Comparative Genomics, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
| | - Holly Heiniger
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, ActonACT2601, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA5000, Australia
| | - Steven Ogbourne
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore, QLD4556, Australia
| | - Michael Archer
- Earth and Sustainability Science Research Centre, School of Biological, Earth & Environmental Sciences, University of New South Wales Sydney, SydneyNSW2052, Australia
| | - J. William O. Ballard
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, VIC3052, Australia
| | - Elizabeth Reed
- Ecology and Evolutionary Biology, School of Biological Sciences, The University of Adelaide, AdelaideSA5005, Australia
| | - Raymond Tobler
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Evolution of Cultural Diversity Initiative, School of Culture, History and Language, College of Asia and the Pacific, The Australian National University, Acton, ACT2601, Australia
| | - Loukas Koungoulos
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Acton, ACT2601, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, NSW2010, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Acton, ACT2601, Australia
| | - Keryn Walshe
- School of Anthropology and Archaeology, University of Auckland, Auckland1010, New Zealand
| | - Joanne L. Wright
- Queensland Department of Education, Kelvin Grove State College, Kelvin Grove, QLD4059, Australia
| | - Jane Balme
- School of Social Sciences, University of Western Australia, Crawley, WA6009, Australia
| | - Sue O’Connor
- Archaeology and Natural History, School of Culture, History and Language, College of Asia and the Pacific, Australian National University, Acton, ACT2601, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The Australian National University, Acton, ACT2601, Australia
| | - Alan Cooper
- Gulbali Institute, Charles Sturt University, Albury, NSW2640, Australia
| | - Kieren J. Mitchell
- Australian Centre for Ancient DNA, School of Biological Sciences, The University of Adelaide, Adelaide, SA5005, Australia
- Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage (CABAH), AdelaideSA5005, Australia
- Manaaki Whenua—Landcare Research, Lincoln, Canterbury7608, New Zealand
| |
Collapse
|
2
|
Leon-Apodaca AV, Kumar M, del Castillo A, Conroy GC, Lamont RW, Ogbourne S, Cairns KM, Borburgh L, Behrendorff L, Subramanian S, Szpiech ZA. Genomic Consequences of Isolation and Inbreeding in an Island Dingo Population. Genome Biol Evol 2024; 16:evae130. [PMID: 38913571 PMCID: PMC11221432 DOI: 10.1093/gbe/evae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Dingoes come from an ancient canid lineage that originated in East Asia around 8,000 to 11,000 years BP. As Australia's largest terrestrial predator, dingoes play an important ecological role. A small, protected population exists on a world heritage listed offshore island, K'gari (formerly Fraser Island). Concern regarding the persistence of dingoes on K'gari has risen due to their low genetic diversity and elevated inbreeding levels. However, whole-genome sequence data is lacking from this population. Here, we include five new whole-genome sequences of K'gari dingoes. We analyze a total of 18 whole-genome sequences of dingoes sampled from mainland Australia and K'gari to assess the genomic consequences of their demographic histories. Long (>1 Mb) runs of homozygosity (ROHs)-indicators of inbreeding-are elevated in all sampled dingoes. However, K'gari dingoes showed significantly higher levels of very long ROH (>5 Mb), providing genomic evidence for small population size, isolation, inbreeding, and a strong founder effect. Our results suggest that, despite current levels of inbreeding, the K'gari population is purging strongly deleterious mutations, which, in the absence of further reductions in population size, may facilitate the persistence of small populations despite low genetic diversity and isolation. However, there may be little to no purging of mildly deleterious alleles, which may have important long-term consequences, and should be considered by conservation and management programs.
Collapse
Affiliation(s)
- Ana V Leon-Apodaca
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Manoharan Kumar
- School of Science, Technology & Engineering, University of the Sunshine Coast, 1 Moreton Parade, Petrie, Queensland, Australia
| | - Andres del Castillo
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Gabriel C Conroy
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Robert W Lamont
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Steven Ogbourne
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Kylie M Cairns
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW 2052, Australia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, NSW 2052, Australia
| | - Liz Borburgh
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Linda Behrendorff
- Queensland Parks and Wildlife Service, Department of Environment & Science, K’gari, Australia
| | - Sankar Subramanian
- School of Science, Technology & Engineering, University of the Sunshine Coast, 1 Moreton Parade, Petrie, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Zachary A Szpiech
- Department of Biology, Pennsylvania State University, University Park, PA, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
3
|
Leon-Apodaca AV, Kumar M, del Castillo A, Conroy GC, Lamont RW, Ogbourne S, Cairns KM, Borburgh L, Behrendorff L, Subramanian S, Szpiech ZA. Genomic consequences of isolation and inbreeding in an island dingo population. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.15.557950. [PMID: 37745583 PMCID: PMC10516007 DOI: 10.1101/2023.09.15.557950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Dingoes come from an ancient canid lineage that originated in East Asia around 8000-11,000 years BP. As Australia's largest terrestrial predator, dingoes play an important ecological role. A small, protected population exists on a world heritage listed offshore island, K'gari (formerly Fraser Island). Concern regarding the persistence of dingoes on K'gari has risen due to their low genetic diversity and elevated inbreeding levels. However, whole-genome sequencing data is lacking from this population. Here, we include five new whole-genome sequences of K'gari dingoes. We analyze a total of 18 whole genome sequences of dingoes sampled from mainland Australia and K'gari to assess the genomic consequences of their demographic histories. Long (>1 Mb) runs of homozygosity (ROH) - indicators of inbreeding - are elevated in all sampled dingoes. However, K'gari dingoes showed significantly higher levels of very long ROH (>5 Mb), providing genomic evidence for small population size, isolation, inbreeding, and a strong founder effect. Our results suggest that, despite current levels of inbreeding, the K'gari population is purging strongly deleterious mutations, which, in the absence of further reductions in population size, may facilitate the persistence of small populations despite low genetic diversity and isolation. However, there may be little to no purging of mildly deleterious alleles, which may have important long-term consequences, and should be considered by conservation and management programs.
Collapse
Affiliation(s)
| | - Manoharan Kumar
- School of Science, Technology & Engineering, University of the Sunshine Coast, 1 Moreton Parade, Petrie, Queensland, Australia
| | | | - Gabriel C. Conroy
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Robert W Lamont
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Steven Ogbourne
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Kylie M. Cairns
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney NSW 2052, Australia
- Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney NSW 2052, Australia
| | - Liz Borburgh
- School of Science, Technology & Engineering, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Linda Behrendorff
- Queensland Parks and Wildlife Service, Department of Environment & Science, K’gari, Australia
| | - Sankar Subramanian
- School of Science, Technology & Engineering, University of the Sunshine Coast, 1 Moreton Parade, Petrie, Queensland, Australia
- Centre for Bioinnovation, University of the Sunshine Coast, 90 Sippy Downs Drive, Sippy Downs, Queensland, Australia
| | - Zachary A. Szpiech
- Department of Biology, Pennsylvania State University, PA, USA
- Institute for Computational and Data Sciences, Pennsylvania State University, PA, USA
| |
Collapse
|
4
|
Behrendorff L, King R, Allen BL. Trouble in paradise: When two species of conservation and cultural value clash, causing a management conundrum. Ecol Evol 2023; 13:e10726. [PMID: 38020708 PMCID: PMC10653987 DOI: 10.1002/ece3.10726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Threatened species throughout the world are in decline due to various causes. In some cases, predators of conservation or cultural value are causing the decline of threatened prey, presenting a conservation conundrum for managers. We surveyed marine turtle nests on K'gari (formally known as Fraser Island), Australia, to investigate dingo predation of green and loggerhead turtle nests, where each of these species is of conservation value. Our monitoring revealed that 84% of nests were predated by dingoes. Only 16% of nests were not consumed by dingoes, and only 5.7% of nests were confirmed to have successfully hatched. Up to 94% of nests were consumed in some areas, and predation rates were similar across different dingo packs. Information on the available numbers of nests and dingoes in the area indicated that turtle nests alone are sufficient to support extant dingoes over the summer. These results indicate that marine turtle eggs represent a previously unquantified but important food source for dingoes on K'gari, and that turtle nests at this rookery site are under serious threat from dingoes. This research should highlight the importance of prioritising the protection of turtle nests from dingoes or risk losing the entire rookery forever in the near future.
Collapse
Affiliation(s)
- Linda Behrendorff
- School of Agriculture and Food SciencesUniversity of QueenslandGattonQueenslandAustralia
- Queensland Government Department of Environment and ScienceQueensland Parks and Wildlife ServiceK'gariQueenslandAustralia
| | - Rachel King
- School of Mathematics, Physics and ComputingUniversity of Southern QueenslandToowoombaQueenslandAustralia
| | - Benjamin L. Allen
- Institute for Life Sciences and the EnvironmentUniversity of Southern QueenslandToowoombaQueenslandAustralia
- Centre for African Conservation EcologyNelson Mandela UniversityPort ElizabethSouth Africa
| |
Collapse
|
5
|
Stephens D, Fleming PJS, Sawyers E, Mayr TP. An isolated population reveals greater genetic structuring of the Australian dingo. Sci Rep 2022; 12:19105. [PMID: 36352001 PMCID: PMC9646726 DOI: 10.1038/s41598-022-23648-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
The Australian dingo is a recent anthropogenic addition to the Australian fauna, which spread rapidly across the continent and has since widely interbred with modern dogs. Genetic studies of dingoes have given rise to speculation about their entry to the continent and subsequent biogeographic effects, but few studies of their contemporary population structure have been conducted. Here we investigated the dingo ancestry and population structure of free-living dogs in western Victoria and contrasted it with a wider southern Australian sample. We wished to determine whether their geographic isolation was mirrored in genetic isolation. To address this question, we analysed 34 microsatellite markers using Bayesian clustering and discriminant analysis of principal components, and summarised genetic diversity at the population and individual level. The broader southern Australia sample (n = 1138) comprised mostly hybrid animals, with 30% considered pure dingoes. All western Victorian individuals (n = 59) appeared to be hybrids with high dingo ancestry. The population showed no evidence of admixture with other populations and low genetic diversity on all measures tested. Based upon our characterisation of this unusual mainland population, we advise against assuming homogeneity of dingoes across the continent.
Collapse
Affiliation(s)
| | - Peter J. S. Fleming
- grid.1680.f0000 0004 0559 5189Vertebrate Pest Research Unit, NSW Department of Primary Industries, 1447 Forest Road, Orange, NSW 2800 Australia ,grid.1020.30000 0004 1936 7371Ecosystem Management, School of Environmental and Rural Science, University of New England, Armidale, NSW 2351 Australia ,grid.1048.d0000 0004 0473 0844Institute for Agriculture and the Environment, Centre for Sustainable Agricultural Systems, University of Southern Queensland, Toowoomba, QLD 4350 Australia
| | - Emma Sawyers
- grid.1680.f0000 0004 0559 5189Vertebrate Pest Research Unit, NSW Department of Primary Industries, 1447 Forest Road, Orange, NSW 2800 Australia ,Vertebrate Pest Research Unit, NSW Department of Primary Industries, 10 Valentine Ave, Parramatta, NSW 2150 Australia
| | - Tim P. Mayr
- grid.452205.40000 0000 9561 2798Department of Environment, Land, Water and Planning, 308-390 Koorlong Ave, Irymple, VIC 3498 Australia
| |
Collapse
|
6
|
Brunton E, Brunton A, Hohwieler K, Ogbourne S, Conroy G. Spatial genetic structure and gene flow of the eastern grey kangaroo (Macropus giganteus), in a rapidly urbanising landscape. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Before Azaria: A Historical Perspective on Dingo Attacks. Animals (Basel) 2022; 12:ani12121592. [PMID: 35739928 PMCID: PMC9219548 DOI: 10.3390/ani12121592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
This paper investigates the origin of the once popular belief in Australian society that wild dingoes do not attack humans. To address this problem, a digital repository of archived newspaper articles and other published texts written between 1788 and 1979 were searched for references to dingoes attacking non-Indigenous people. A total of 52 accounts spanning the period between 1804 and 1928 was identified. A comparison of these historical accounts with the details of modern dingo attacks suggests that at least some of the former are credible. The paper also examined commonly held attitudes towards dingoes in past Australian society based on historical print media articles and other records. Early chroniclers of Australian rural life and culture maintained that dingoes occasionally killed and ate humans out of a predatory motivation. By the early decades of the 20th century, however, an opposing view of this species had emerged: namely, that dingoes were timid animals that continued to pose a danger to livestock, but never to people. This change in the cultural image of dingoes can possibly be linked to more than a century of lethal dingo control efforts greatly reducing the frequency of human–dingo interactions in the most populous parts of the country. This intensive culling may also have expunged the wild genetic pool of dingoes that exhibited bold behaviour around people and/or created a dingo population that was largely wary of humans.
Collapse
|