1
|
Wan D, Cheng A, Wang Y, Zhong G, Li WV, Fan H. Analyzing RNA-Seq data from Chlamydia with super broad transcriptomic activation: challenges, solutions, and implications for other systems. BMC Genomics 2024; 25:801. [PMID: 39182031 PMCID: PMC11344909 DOI: 10.1186/s12864-024-10714-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND RNA sequencing (RNA-Seq) offers profound insights into the complex transcriptomes of diverse biological systems. However, standard differential expression analysis pipelines based on DESeq2 and edgeR encounter challenges when applied to the immediate early transcriptomes of Chlamydia spp., obligate intracellular bacteria. These challenges arise from their reliance on assumptions that do not hold in scenarios characterized by extensive transcriptomic activation and limited repression. RESULTS Standard analyses using unique chlamydial RNA-Seq reads alone identify nearly 300 upregulated and about 300 downregulated genes, significantly deviating from actual RNA-Seq read trends. By incorporating both chlamydial and host reads or adjusting for total sequencing depth, the revised normalization methods each detected over 700 upregulated genes and 30 or fewer downregulated genes, closely aligned with observed RNA-Seq data. Further validation through qRT-PCR analysis confirmed the effectiveness of these adjusted approaches in capturing the true extent of transcriptomic activation during the immediate early phase of chlamydial infection. CONCLUSIONS This study highlights the limitations of standard RNA-Seq analysis tools in scenarios with extensive transcriptomic activation, such as in Chlamydia spp. during early infection. Our revised normalization methods, incorporating host reads or total sequencing depth, provide a more accurate representation of gene expression dynamics. These approaches may inform similar adjustments in other systems with unbalanced gene expression dynamics, enhancing the accuracy of transcriptomic analysis.
Collapse
Affiliation(s)
- Danny Wan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Andrew Cheng
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Yuxuan Wang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Wei Vivian Li
- Department of Statistics, University of California Riverside, Riverside, CA, 92521, USA.
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
2
|
Chattopadhyay AN, Jiang M, Makabenta JMV, Park J, Geng Y, Rotello V. Nanosensor-Enabled Detection and Identification of Intracellular Bacterial Infections in Macrophages. BIOSENSORS 2024; 14:360. [PMID: 39194589 DOI: 10.3390/bios14080360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024]
Abstract
Opportunistic bacterial pathogens can evade the immune response by residing and reproducing within host immune cells, including macrophages. These intracellular infections provide reservoirs for pathogens that enhance the progression of infections and inhibit therapeutic strategies. Current sensing strategies for intracellular infections generally use immunosensing of specific biomarkers on the cell surface or polymerase chain reaction (PCR) of the corresponding nucleic acids, making detection difficult, time-consuming, and challenging to generalize. Intracellular infections can induce changes in macrophage glycosylation, providing a potential strategy for signature-based detection of intracellular infections. We report here the detection of bacterial infection in macrophages using a boronic acid (BA)-based pH-responsive polymer sensor array engineered to distinguish mammalian cell phenotypes by their cell surface glycosylation signatures. The sensor was able to discriminate between different infecting bacteria in minutes, providing a promising tool for diagnostic and screening applications.
Collapse
Affiliation(s)
- Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jessa Marie V Makabenta
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Jungmi Park
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Yingying Geng
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
3
|
Wan D, Cheng A, Wang Y, Zhong G, Li WV, Fan H. Analyzing RNA-Seq Data from Chlamydia with Super Broad Transcriptomic Activation: Challenges, Solutions, and Implications for Other Systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594566. [PMID: 38826265 PMCID: PMC11142123 DOI: 10.1101/2024.05.16.594566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Motivation RNA sequencing (RNA-Seq) offers profound insights into the complex transcriptomes of diverse biological systems. However, standard differential expression analysis pipelines based on DESeq2 and edgeR encounter challenges when applied to the immediate early transcriptomes of Chlamydia spp., obligate intracellular bacteria. These challenges arise from their reliance on assumptions that do not hold in scenarios characterized by extensive transcriptomic activation and limited repression. Standard analyses using unique chlamydial RNA-Seq reads alone identify nearly 300 upregulated and about 300 downregulated genes, significantly deviating from actual RNA-Seq read trends. Results By incorporating both chlamydial and host reads or adjusting for total sequencing depth, the revised normalization methods each detected over 700 upregulated genes and 30 or fewer downregulated genes, closely aligned with observed RNA-Seq data. Further validation through qRT-PCR analysis confirmed the effectiveness of these adjusted approaches in capturing the true extent of transcriptomic activation during the immediate early phase of chlamydial infection. While the strategies employed are developed in the context of Chlamydia, the principles of flexible and context-aware normalization may inform adjustments in other systems with unbalanced gene expression dynamics, such as bacterial spore germination. Availability and implementation The code for reproducing the presented bioinformatic analysis is available at https://zenodo.org/records/11201379.
Collapse
Affiliation(s)
- Danny Wan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Andrew Cheng
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Yuxuan Wang
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Wei Vivian Li
- Department of Statistics, University of California Riverside, Riverside, CA92521, USA
| | - Huizhou Fan
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| |
Collapse
|
4
|
Luu LDW, Kasimov V, Phillips S, Myers GSA, Jelocnik M. Genome organization and genomics in Chlamydia: whole genome sequencing increases understanding of chlamydial virulence, evolution, and phylogeny. Front Cell Infect Microbiol 2023; 13:1178736. [PMID: 37287464 PMCID: PMC10242142 DOI: 10.3389/fcimb.2023.1178736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
The genus Chlamydia contains important obligate intracellular bacterial pathogens to humans and animals, including C. trachomatis and C. pneumoniae. Since 1998, when the first Chlamydia genome was published, our understanding of how these microbes interact, evolved and adapted to different intracellular host environments has been transformed due to the expansion of chlamydial genomes. This review explores the current state of knowledge in Chlamydia genomics and how whole genome sequencing has revolutionised our understanding of Chlamydia virulence, evolution, and phylogeny over the past two and a half decades. This review will also highlight developments in multi-omics and other approaches that have complemented whole genome sequencing to advance knowledge of Chlamydia pathogenesis and future directions for chlamydial genomics.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | - Vasilli Kasimov
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Samuel Phillips
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Garry S. A. Myers
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, NSW, Australia
| | - Martina Jelocnik
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
5
|
Host Cell Amplification of Nutritional Stress Contributes To Persistence in Chlamydia trachomatis. mBio 2022; 13:e0271922. [PMID: 36377897 PMCID: PMC9765610 DOI: 10.1128/mbio.02719-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Persistence, a viable but non-replicating growth state, has been implicated in diseases caused by Chlamydia trachomatis. Starvation of distinct nutrients produces a superficially similar persistent state, implying convergence on a common intracellular environment. We employed host-pathogen dual RNA-sequencing under both iron- and tryptophan-starved conditions to systematically characterize the persistent chlamydial transcriptome and to define common contributions of the host cell transcriptional stress response in shaping the intracellular environment. The transcriptome of the infected host cells was highly specific to each nutritional stress, despite comparable effects on chlamydial growth and development in each condition. In contrast, the chlamydial transcriptomes between nutritional conditions were highly similar, suggesting some overlap in host cell responses to iron limitation and tryptophan starvation that contribute to a common persistent phenotype. We demonstrate that a commonality in the host cell responses is the suppression of GTP biosynthesis, a nucleotide for which Chlamydia are auxotrophic. Pharmacological inhibition of host IMP dehydrogenase (IMPDH1), which catalyzes the rate-limiting step in de novo guanine nucleotide synthesis, resulted in comparable GTP depletion to both iron and tryptophan starvation and induced chlamydial persistence. Moreover, IMPDH1 inhibition and iron starvation acted synergistically to control chlamydial growth. Thus, host cell reduction in GTP levels amplifies the nutritional stress to intracellular chlamydiae in infection-relevant models of persistence, illustrating the determinative role the infected host cell plays in bacterial stress responses. IMPORTANCE Bacteria respond to nutritional stress through universal and unique mechanisms. Genome reduction in the Chlamydiaceae, a consequence of coevolution with their obligate eukaryotic hosts, has reduced their repertoire of stress response mechanisms. Here, we demonstrate that the infected host cell may provide the context within which universal stress responses emerge for Chlamydia trachomatis. We report that during starvation of the essential nutrients iron or tryptophan, a common response of the infected epithelial cell is the suppression of GTP biosynthesis, which induces a persistent developmental state in the pathogen. Thus, chlamydial persistence results from the combined effects of primary stresses on the pathogen and the host, with the latter eliciting a secondary host cell response that intensifies the inhospitable intracellular environment.
Collapse
|
6
|
Rosario C, Tan M. Chlamydia trachomatis RsbU Phosphatase Activity Is Inhibited by the Enolase Product, Phosphoenolpyruvate. J Bacteriol 2022; 204:e0017822. [PMID: 36121291 PMCID: PMC9578391 DOI: 10.1128/jb.00178-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022] Open
Abstract
The intracellular pathogen Chlamydia temporally regulates the expression of its genes, but the upstream signals that control transcription are not known. The best-studied regulatory pathway is a partner-switching mechanism that involves an anti-sigma factor, RsbW, which inhibits transcription by binding and sequestering the sigma subunit of RNA polymerase. RsbW is itself regulated by an anti-anti-sigma factor, RsbV, whose phosphorylation state is controlled by the phosphatase RsbU. In this study, we showed that Chlamydia trachomatis RsbU requires manganese or magnesium as a cofactor and dephosphorylates RsbV1 and RsbV2, which are the two chlamydial paralogs of RsbV. The gene for RsbU is adjacent to the enolase gene in a number of Chlamydia genomes, and we showed that eno and rsbU are cotranscribed from the same operon. In other bacteria, there is no known functional connection between the Rsb pathway and enolase, which is an enzyme in the glycolytic pathway. We found, however, that Chlamydia RsbU phosphatase activity was inhibited by phosphoenolpyruvate (PEP), the product of the enolase reaction, but not by 2-phosphoglycerate (2PGA), which is the substrate. These findings suggest that the enolase reaction and, more generally, glucose metabolism, may provide an upstream signal that regulates transcription in Chlamydia through the RsbW pathway. IMPORTANCE The RsbW pathway is a phosphorelay that regulates gene expression in Chlamydia, but its upstream signal has not been identified. We showed that RsbU, a phosphatase in this pathway, is inhibited by phosphoenolpyruvate, which is the product of the enolase reaction. As enolase is an enzyme in the glycolytic pathway, these results reveal an unrecognized link between glucose metabolism and gene regulation in chlamydiae. Moreover, as these intracellular bacteria acquire glucose from the infected host cell, our findings suggest that glucose availability may be an external signal that controls chlamydial gene expression.
Collapse
Affiliation(s)
- Christopher Rosario
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Ming Tan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
- Department of Medicine, University of California, Irvine, California, USA
| |
Collapse
|