1
|
Łaska G, Sieniawska E, Świątek Ł, Czapiński J, Rivero-Müller A, Kiercul S, Tekwani BL, Pasco DS, Balachandran P. Evaluating the impact of Xanthoparmelia conspersa extracts on signaling in HeLa cells and exploring their diverse biological activities. Sci Rep 2024; 14:28531. [PMID: 39557857 PMCID: PMC11574082 DOI: 10.1038/s41598-024-73599-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 09/19/2024] [Indexed: 11/20/2024] Open
Abstract
Xanthoparmelia conspersa is rich in specific secondary metabolites but an unexplored lichen species. This work determined the chemical composition and biological activities (anti-microbial, anti-protozoal, and cytotoxic) of its methanolic and hexane extracts. Additionally, we evaluated the potential of these extracts in modulating cancer signaling pathways in HeLa cells. The phytochemical analysis revealed that usnic acid was the predominant constituent in the hexane extract, while stictic acid was in the methanolic one. Among tested cell lines (VERO, FaDu, SCC-25, HeLa), cytotoxic selectivity was detected for X. conspersa hexane extract against the FaDu (SI 7.36) and HeLa (SI 2.19) cells. A noticeably better anti-microbial potential was found for hexane extract, however, the overall anti-microbial activity was relatively weak (28, 21, and 20% inhibition of Candida glabrata, Cryptococcus neoformans, and Escherichia coli, respectively). On the contrary, the anti-parasitic action of hexane extract was significant, with an IC50 value of 2.64 µg/mL against Leishmania donovani - amastigote and 7.18 µg/mL against Trypanosoma brucei. The detailed evaluation of the cancer-related signaling pathways in HeLa cells, done by two distinct methodologies (luciferase reporter tests), revealed that especially the hexane extract and usnic acid exhibited selective inhibition of Stat3, Smad, NF-κB, cMYC, and Notch pathways.
Collapse
Affiliation(s)
- Grażyna Łaska
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Bialystok, 15-351, Poland
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, Lublin, 20-093, Poland.
| | - Łukasz Świątek
- Department of Virology with Viral Diagnostics Laboratory, Medical University of Lublin, Lublin, 20-093, Poland
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Lublin, 20-093, Poland
| | - Sylwia Kiercul
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, Bialystok, 15-351, Poland
| | - Babu Lal Tekwani
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - David S Pasco
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA
| | - Premalatha Balachandran
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS, 38677, USA.
| |
Collapse
|
2
|
Zhou YX, Luo WJ, Zhou TT, Zhou Y, Li HL, Sun F, Ge YW, Piao XH. Precursor ions-guided comprehensive profiling of triterpenoid saponins from the Eleutherococcus senticosus stems and their neuroprotective effect evaluation. J Pharm Biomed Anal 2024; 238:115849. [PMID: 37979523 DOI: 10.1016/j.jpba.2023.115849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/09/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023]
Abstract
Triterpenoid saponins (TS) are the main constituents of Eleutherococcus senticosus, also termed as Siberian ginseng or Ciwujia, a widely used herb in China, Japan, Korea, and Russia for its beneficial effects on memory enhancement, tonifying, heart-nourishing, and tranquilizing. Although the stems, rhizomes, and roots are used identically, a preliminary experiment found TS were specifically distributed in stems rather than the underground parts. However, a comprehensive profiling of the TS compounds in E. senticosus stems (ESS) is still absent. In this study, an MS/MS molecular networking (MN)-based precursor ions (PIs) discovery strategy was applied to fast track the TS compounds from ESS extract. A total of 80 TS were tracked and characterized, among which 78 ones were reported for the first time in ESS. Furthermore, the TS-rich fraction (ESS-TS) was prepared by a series of chromatography separation, and was found with significant neuralprotective effects on attenuating Aβ25-35-induced neurite atrophy, and promoting the outgrowth of damaged neurite in the Aβ25-35-induced primary cortical neuronal damage model. In conclusion, this study highlighted the existence of TS compounds in ESS, a major medicinal parts nowadays adopted as Ciwujia by the Chinese Pharmacopiea and market. In addition, the TS was found with determined roles in the outgrowth of neuritis, and was proposed as crucial constituent when the E. senticosus was used as the therapeutic agents for neural diseases. These results supplies scientific data for the quality control of E. senticosus and the further development of ESS-TS as memory enhancement agents.
Collapse
Affiliation(s)
- Ying-Xin Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Wen-Jie Luo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Tian-Tian Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yu Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Hui-Lin Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Fei Sun
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou 510006, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of National Administration of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xiu-Hong Piao
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Pan SM, Wang CL, Hu ZF, Zhang ML, Pan ZF, Zhou RY, Wang XJ, Huang SW, Li YY, Wang Q, Luo X, Zhou L, Hou JT, Chen B. Baitouweng decoction repairs the intestinal barrier in DSS-induced colitis mice via regulation of AMPK/mTOR-mediated autophagy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116888. [PMID: 37437793 DOI: 10.1016/j.jep.2023.116888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is one of non-specific inflammatory bowel disease that mainly affects the colon. Recently, UC has become a significant social and economic problem worldwide. Baitouweng decoction (BD), a traditional Chinese medicine described in the "Treatise on Febrile Diseases", has been used for centuries to treat intestinal diseases. However, its underlying mechanism remains largely unexplored. AIM OF STUDY In this study, we aimed to investigate the effect of BD on autophagy for repairing the colonic barrier in DSS-induced colitis mice and explored its role in regulating the autophagic signaling pathway AMPK/mTOR. MATERIALS AND METHODS Mice with colitis were treated with 3% dextran sulfate sodium (DSS) for 7 days. The effectiveness of BD in treating DSS-induced colitis was evaluated through body weight, disease activity index (DAI), colon length, pathological changes, organ index, and proportion of blood cells. Moreover, intestinal epithelial permeability was analyzed by examining FITC-dextran leakage, the bacterial load of mesenteric lymph nodes (MLNs), and bacterial infiltration of colon tissues. Barrier function was evaluated by assessing the number and proportion of colonic goblet cells and the expression of tight junction proteins, including ZO-1, claudin-1, and occludin. Furthermore, the levels of autophagy were assessed by examining the number of autophagosomes and the expression of the autophagy-related proteins LC3, Beclin1, and P62. Additionally, network pharmacology research was conducted to analyze the potential mechanisms underlying the medicinal effects, as indicated by the role of AMPK/mTOR in regulating the autophagic signaling pathway. RESULTS BD improved colitis symptoms in mice by restoring body weight and colon length and reducing inflammatory cell infiltration. Additionally, BD decreased the diffusion of FITC-dextran and bacterial translocation in MLNs, as well as bacterial infiltration of the colonic mucosa. The number and proportion of colonic goblet cells, the expression of ZO-1, Claudin-1, and Occludin, and the levels of autophagy were also increased by BD. Network pharmacology analysis suggested that BD might affect intestinal autophagy through the AMPK signaling pathway, which was confirmed by the activation of AMPK phosphorylation and the downregulation of mTOR expression following BD treatment. CONCLUSION Our study demonstrated that BD repaired the intestinal epithelial barrier in DSS-induced colitis mice by activating AMPK phosphorylation and inhibiting mTOR expression to promote autophagy.
Collapse
Affiliation(s)
- Si-Min Pan
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Chun-Li Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Zhi-Fan Hu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Mei-Ling Zhang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zeng-Feng Pan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Ruo-Yu Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; The First Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xiao-Jing Wang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shao-Wei Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yan-Yang Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qing Wang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xia Luo
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Lian Zhou
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiang-Tao Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| | - Bin Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
| |
Collapse
|
4
|
Amerifar M, Arabnozari H, Shokrzadeh M, Habibi E. Evaluation of antioxidant properties and cytotoxicity of brown algae (nizamuddinia zanardinii) in uterine (hela) and pancreatic cancer cell lines (paca-2). Hum Exp Toxicol 2024; 43:9603271241227228. [PMID: 38238028 DOI: 10.1177/09603271241227228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
INTRODUCTION Pancreatic cancer and cervical cancer are among the most common cancers. Brown algae have anti-inflammatory, anti-cancer, anti-fungal, antioxidant, and immune-boosting properties. This study investigated the antioxidant properties and the effect of brown algae extract on pancreatic and uterine cancer cells. MATERIALS AND METHODS In this study, Cervical (Hela) and pancreas (Paca-2) cancer cell lines were examined. The algae materials were extracted by sequential maceration method and amount of fucoxanthin content in the sample was determined by using High Performance Liquid Chromatography (HPLC) system. The cytotoxic effect of different concentrations of brown algae was measured by the MTT assay. All statistical calculations for comparing IC50 were analyzed using Graph Pad Prism software. RESULTS the algal sample contained an average of 102.52 ± 0.12 μg of fucoxanthin per 100 g. IC50 for 2, 2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide free radical scavenging activity for methanolic extract was 2.02 and 11.98 ± 0.13 respectively. Brown algae in all fractions inhibited cell growth and survival. In Hela cell lines, the methanolic extract was the most effective inhibitor, while in Paca cell lines, hexane and methanolic extracts were particularly potent. The methanolic extract was more toxic than other fractions on Hela and Paca cell lines. CONCLUSION This study highlights brown algae extracts strong anticancer effects on uterine and pancreatic cancer cells, suggesting its potential as a natural anticancer drug. Different fractions of the extract showed superior apoptotic and cytotoxic effects, with higher concentrations leading to increased apoptotic effects and reduced survival rates of cancer cells.
Collapse
Affiliation(s)
- Milad Amerifar
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hesamoddin Arabnozari
- Student Research Committee, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Mohammad Shokrzadeh
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Emran Habibi
- Medicinal Plants Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Jung DH, Lee A, Hwang YH, Jung MA, Pyun BJ, Lee JY, Kim T, Song KH, Ji KY. Therapeutic effects of Pulsatilla koreana Nakai extract on ovalbumin-induced allergic rhinitis by inhibition of Th2 cell activation and differentiation via the IL-4/STAT6/GATA3 pathway. Biomed Pharmacother 2023; 162:114730. [PMID: 37080090 DOI: 10.1016/j.biopha.2023.114730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/09/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Allergic rhinitis (AR), caused by immunoglobulin E (IgE)-mediated inflammation, generally occurs in the upper respiratory tract. T helper type 2 (Th2) cell-mediated cytokines, including interleukin (IL)-4, IL-5, and IL-13, are important factors in AR pathogenesis. Despite various treatment options, the difficulty in alleviating AR and pharmacological side effects necessitate development of new therapies. The root of Pulsatilla koreana Nakai (P. koreana), a pasque flower, has been used as a herbal medicine. However, its effects on AR remain unclear; therefore, we aimed to explore this subject in the current study. The therapeutic effects of P. koreana water extract (PKN) on the pathophysiological functions of the nasal mucosa was examined in ovalbumin (OVA)-induced AR mice. The effect of PKN on Th2 activation and differentiation was evaluated using concanavalin A-induced splenocytes and differentiated Th2 cells from naïve CD4+ T cells. We also investigated the effect of changes in JAK/STAT6/GATA3 signaling on IL-4-induced Th2 cells. In OVA-induced AR mice, PKN administration alleviated allergic nasal symptoms and decreased the total number of immune cells, lymphocytes, neutrophils, and eosinophils in nasal lavage fluid; serum levels of OVA-specific IgE, histamine, and IL-13 were also significantly reduced. PKN also ameliorated OVA-induced nasal mucosal tissue thickening by inhibiting inflammation and goblet cell hyperplasia. PKN treatment significantly inhibited Th2 activity and differentiation through the IL-4/STAT-6/GATA3 pathway in Th2 cells. PKN is an effective AR treatment with the potential to improve patients' daily lives by regulating the allergic inflammatory response induced by Th2 cells.
Collapse
Affiliation(s)
- Dong Ho Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Ami Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Youn-Hwan Hwang
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Myung-A Jung
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Bo-Jeong Pyun
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Joo Young Lee
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Taesoo Kim
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea
| | - Kwang Hoon Song
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea.
| | - Kon-Young Ji
- KM Convergence Research Division, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Daejeon 34054, the Republic of Korea; Center for Companion Animal New Drug Development, Jeonbuk Branch, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup-si 56212, the Republic of Korea.
| |
Collapse
|
6
|
Łaska G, Sieniawska E, Maciejewska-Turska M, Świątek Ł, Pasco DS, Balachandran P. Pulsatilla vulgaris Inhibits Cancer Proliferation in Signaling Pathways of 12 Reporter Genes. Int J Mol Sci 2023; 24:ijms24021139. [PMID: 36674653 PMCID: PMC9860614 DOI: 10.3390/ijms24021139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/10/2023] Open
Abstract
This study aimed to examine if methanolic extracts of Pulsatilla vulgaris Mill. can inhibit HeLa cell proliferation through the modulation of cancer-related signaling pathways. The cytotoxicity and chemical composition of P. vulgaris leaves and root extracts were also determined. Research showed that root extract of P. vulgaris inhibited 12 signaling pathways in a cervical cancer cell line and the most potent activation inhibition was observed for MYC, Notch, Wnt, E2F, Ets, Stat3, Smad, Hdghog, AP-1, and NF-κB, at a concentration of 40 µg/mL. The methanolic extracts of P. vulgaris enhanced apoptotic death and deregulated cellular proliferation, differentiation, and progression toward the neoplastic phenotype by altering key signaling molecules required for cell cycle progression. This is the first study to report the influence of P. vulgaris on cancer signaling pathways. Additionally, our detailed phytochemical analysis of the methanolic extracts of P. vulgaris gives a conclusion that compounds, which strongly suppressed the growth and proliferation of HeLa cancer cells were mainly triterpenoid saponins accompanied by phenolic acids.
Collapse
Affiliation(s)
- Grażyna Łaska
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland
- Correspondence:
| | - Magdalena Maciejewska-Turska
- Department of Pharmacognosy with the Medicinal Plant Garden, Medical University of Lublin, 20-093 Lublin, Poland
| | - Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, 20-093 Lublin, Poland
| | - David S. Pasco
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Premalatha Balachandran
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
7
|
Świątek Ł, Sieniawska E, Sinan KI, Zengin G, Uba AI, Bene K, Maciejewska-Turska M, Rajtar B, Polz-Dacewicz M, Aktumsek A. Bridging the Chemical Profiles and Biological Effects of Spathodea campanulata Extracts: A New Contribution on the Road from Natural Treasure to Pharmacy Shelves. Molecules 2022; 27:molecules27154694. [PMID: 35897865 PMCID: PMC9330408 DOI: 10.3390/molecules27154694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 02/05/2023] Open
Abstract
Spathodea campanulata is an important medicinal plant with traditional uses in the tropical zone. In the current work, we aimed to determine the chemical profiles and biological effects of extracts (methanolic and infusion (water)) from the leaves and stem bark of S. campanulata. The chemical components of the tested extracts were identified using LC-ESI-QTOF-MS. Biological effects were tested in terms of antioxidant (radical scavenging, reducing power, and metal chelating), enzyme inhibitory (cholinesterase, amylase, glucosidase, and tyrosinase), antineoplastic, and antiviral activities. Fifty-seven components were identified in the tested extracts, including iridoids, flavonoids, and phenolic acids as the main constituents. In general, the leaves-MeOH extract was the most active in the antioxidant assays (DPPH, ABTS, CUPRAC, FRAP, metal chelating, and phosphomolybdenum). Antineoplastic effects were tested in normal (VERO cell line) and cancer cell lines (FaDu, HeLa, and RKO). The leaf infusion, as well as the extracts obtained from stem bark, showed antineoplastic activity (CC50 119.03–222.07 µg/mL). Antiviral effects were tested against HHV-1 and CVB3, and the leaf methanolic extract (500 µg/mL) exerted antiviral activity towards HHV-1, inhibiting the viral-induced cytopathic effect and reducing the viral infectious titre by 5.11 log and viral load by 1.45 log. In addition, molecular docking was performed to understand the interactions between selected chemical components and viral targets (HSV-1 DNA polymerase, HSV-1 protease, and HSV-1 thymidine kinase). The results presented suggest that S. campanulata may be a bright spot in moving from natural sources to industrial applications, including novel drugs, cosmeceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Łukasz Świątek
- Department of Virology with SARS Laboratory, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (B.R.); (M.P.-D.)
- Correspondence: (Ł.Ś.); (G.Z.)
| | - Elwira Sieniawska
- Department of Natural Products Chemistry, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Kouadio Ibrahime Sinan
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (K.I.S.); (A.A.)
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (K.I.S.); (A.A.)
- Correspondence: (Ł.Ś.); (G.Z.)
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul 34083, Turkey;
| | - Kouadio Bene
- Laboratoire de Botanique et Phytothérapie, Unité de Formation et de Recherche Sciences de la Nature, Université Nangui Abrogoua, Abidjan 00225, Côte d’Ivoire;
| | | | - Barbara Rajtar
- Department of Virology with SARS Laboratory, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (B.R.); (M.P.-D.)
| | - Małgorzata Polz-Dacewicz
- Department of Virology with SARS Laboratory, Medical University of Lublin, Chodzki 1, 20-093 Lublin, Poland; (B.R.); (M.P.-D.)
| | - Abdurrahman Aktumsek
- Department of Biology, Science Faculty, Selcuk University, 42130 Konya, Turkey; (K.I.S.); (A.A.)
| |
Collapse
|
8
|
Zhao H, Ming T, Tang S, Ren S, Yang H, Liu M, Tao Q, Xu H. Wnt signaling in colorectal cancer: pathogenic role and therapeutic target. Mol Cancer 2022; 21:144. [PMID: 35836256 PMCID: PMC9281132 DOI: 10.1186/s12943-022-01616-7] [Citation(s) in RCA: 327] [Impact Index Per Article: 109.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 07/01/2022] [Indexed: 02/08/2023] Open
Abstract
Background The Wnt signaling pathway is a complex network of protein interactions that functions most commonly in embryonic development and cancer, but is also involved in normal physiological processes in adults. The canonical Wnt signaling pathway regulates cell pluripotency and determines the differentiation fate of cells during development. The canonical Wnt signaling pathway (also known as the Wnt/β-catenin signaling pathway) is a recognized driver of colon cancer and one of the most representative signaling pathways. As a functional effector molecule of Wnt signaling, the modification and degradation of β-catenin are key events in the Wnt signaling pathway and the development and progression of colon cancer. Therefore, the Wnt signaling pathway plays an important role in the pathogenesis of diseases, especially the pathogenesis of colorectal cancer (CRC). Objective Inhibit the Wnt signaling pathway to explore the therapeutic targets of colorectal cancer. Methods Based on studying the Wnt pathway, master the biochemical processes related to the Wnt pathway, and analyze the relevant targets when drugs or inhibitors act on the Wnt pathway, to clarify the medication ideas of drugs or inhibitors for the treatment of diseases, especially colorectal cancer. Results Wnt signaling pathways include: Wnt/β-catenin or canonical Wnt signaling pathway, planar cell polarity (Wnt-PCP) pathway and Wnt-Ca2+ signaling pathway. The Wnt signaling pathway is closely related to cancer cell proliferation, stemness, apoptosis, autophagy, metabolism, inflammation and immunization, microenvironment, resistance, ion channel, heterogeneity, EMT/migration/invasion/metastasis. Drugs/phytochemicals and molecular preparations for the Wnt pathway of CRC treatment have now been developed. Wnt inhibitors are also commonly used clinically for the treatment of CRC. Conclusion The development of drugs/phytochemicals and molecular inhibitors targeting the Wnt pathway can effectively treat colorectal cancer clinically.
Collapse
Affiliation(s)
- Hui Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tianqi Ming
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shun Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Shan Ren
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Han Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Maolun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiu Tao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Haibo Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|