1
|
Li Y, Wang Y, Liu Q, Lv S, Wang Y, Zhang H, Zhao Q, Shang L. Kaempferol promotes osteogenic differentiation in bone marrow mesenchymal stem cells by inhibiting CAV-1. J Orthop Surg Res 2024; 19:678. [PMID: 39434162 PMCID: PMC11495062 DOI: 10.1186/s13018-024-05174-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/13/2024] [Indexed: 10/23/2024] Open
Abstract
OBJECTIVE Our study focused on the effects and molecular mechanisms of kaempferol, a major active component of Eucommia ulmoides Oliver (EUO), on the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). METHODS Target molecules for EUO, osteoarthritis, and osteogenic differentiation were identified through network pharmacology analysis. BMSCs were isolated and treated with various concentrations of kaempferol. Optimal concentration was determined through MTT assays. Osteogenic differentiation was assessed using alkaline phosphatase (ALP) and Alizarin Red S staining, while osteogenic markers (Collagen I, RUNX2, and OPN) and CAV-1 expression were analyzed using RT-qPCR and Western blot. The effects of combined treatment with kaempferol and an overexpression vector for CAV-1 (oe-CAV-1) on osteogenic differentiation were also observed. RESULTS Network pharmacology analysis identified kaempferol as the primary active component influencing CAV-1 targeted in subsequent experiments. It was found that 10 µM kaempferol was optimal for treating BMSCs. Post-treatment, significant increases in ALP activity and calcium deposition were observed, along with elevated expression of osteogenic markers, and decreased CAV-1. Overexpression of CAV-1 significantly reversed the promotive effects of kaempferol on BMSC osteogenic differentiation, effectively inhibiting the process. CONCLUSION Collectively, kaempferol promotes osteogenic differentiation in BMSCs by inhibiting CAV-1 expression.
Collapse
Affiliation(s)
- Yingxue Li
- 7th Ward, Department of Rheumatology and Immunology, Xi'an No.5 Hospital, Xi'an, 710082, Shaanxi, P.R. China
| | - Ying Wang
- 5th Ward, Department of Rheumatology and Immunology, Xi'an No.5 Hospital, Xi'an, 710082, Shaanxi, P.R. China
| | - Qian Liu
- 5th Ward, Department of Rheumatology and Immunology, Xi'an No.5 Hospital, Xi'an, 710082, Shaanxi, P.R. China
| | - Shuiying Lv
- 7th Ward, Department of Rheumatology and Immunology, Xi'an No.5 Hospital, Xi'an, 710082, Shaanxi, P.R. China
| | - Yali Wang
- Department of Traditional Chinese Medicine, Xi'an International Medical Center Hospital, No. 777, Xitai Road, High-tech Zone, Xi'an, 710117, Shaanxi, P.R. China
| | - Huanhuan Zhang
- Chinese Medicine Pharmacy, Xi'an International Medical Center Hospital, Xi'an, 710117, Shaanxi, P.R. China
| | - Qiuhong Zhao
- Department of Pharmacy, Xi'an International Medical Center Hospital, Xi'an, 710117, Shaanxi, P.R. China
| | - Lei Shang
- Department of Traditional Chinese Medicine, Xi'an International Medical Center Hospital, No. 777, Xitai Road, High-tech Zone, Xi'an, 710117, Shaanxi, P.R. China.
| |
Collapse
|
2
|
Wei Y, Zheng Z, Zhang Y, Sun J, Xu S, Di X, Ding X, Ding G. Regulation of mesenchymal stem cell differentiation by autophagy. Open Med (Wars) 2024; 19:20240968. [PMID: 38799254 PMCID: PMC11117459 DOI: 10.1515/med-2024-0968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Autophagy, a process that isolates intracellular components and fuses them with lysosomes for degradation, plays an important cytoprotective role by eliminating harmful intracellular substances and maintaining cellular homeostasis. Mesenchymal stem cells (MSCs) are multipotent progenitor cells with the capacity for self-renewal that can give rise to a subset of tissues and therefore have potential in regenerative medicine. However, a variety of variables influence the biological activity of MSCs following their proliferation and transplantation in vitro. The regulation of autophagy in MSCs represents a possible mechanism that influences MSC differentiation properties under the right microenvironment, affecting their regenerative and therapeutic potential. However, a deeper understanding of exactly how autophagy is mobilized to function as well as clarifying the mechanisms by which autophagy promotes MSCs differentiation is still needed. Here, we review the current literature on the complex link between MSCs differentiation and autophagy induced by various extracellular or intracellular stimuli and the molecular targets that influence MSCs lineage determination, which may highlight the potential regulation of autophagy on MSCs' therapeutic capacity, and provide a broader perspective on the clinical application of MSCs in the treatment of a wide range of diseases.
Collapse
Affiliation(s)
- Yanan Wei
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Zejun Zheng
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Ying Zhang
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Jinmeng Sun
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Shuangshuang Xu
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Xinsheng Di
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Xiaoling Ding
- Clinical Competency Training Center, Shandong Second Medical University, Weifang, 261053, Shandong, China
| | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, Shandong, China
| |
Collapse
|
3
|
Aouabdi S, Nedjadi T, Alsiary R, Mouffouk F, Ansari HR. Transcriptomics Demonstrates Significant Biological Effect of Growing Stem Cells on RGD-Cotton Scaffold. Tissue Eng Part A 2024. [PMID: 38666698 DOI: 10.1089/ten.tea.2023.0333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2024] Open
Abstract
Stem cell therapy provides a viable alternative treatment for degenerated or damaged tissue. Stem cells have been used either alone or in conjunction with an artificial scaffold. The latter provides a structural advantage by enabling the cells to thrive in three-dimensional (3D) settings, closely resembling the natural in vivo environments. Previously, we disclosed the development of a 3D scaffold made from cotton, which was conjugated with arginyl-glycyl-aspartic acid (RGD), to facilitate the growth and proliferation of mesenchymal stem cells (MSCs). This scaffold allowed the MSCs to adhere and proliferate without compromising their viability or their stem cell markers. A comprehensive analysis investigation of the molecular changes occurring in MSCs adhering to the cotton fibers will contribute to the advancement of therapy. The objective of this study is to analyze the molecular processes occurring in the growth of MSCs on a cotton-RGD conjugated-based scaffold by examining their gene expression profiles. To achieve this, we conducted an experiment where MSCs were seeded with and without the scaffold for a duration of 48 h. Subsequently, cells were collected for RNA extraction, cDNA synthesis, and whole-transcriptomic analysis performed on both populations. Our analysis revealed several upregulated and downregulated differently expressed genes in the MSCs adhering to the scaffold compared with the control cells. Through gene ontology analysis, we were able to identify enriched biological processes, molecular functions, pathways, and protein-protein interactions in these differentially expressed genes. Our data suggest that the scaffold may have the potential to enhance osteogenesis in the MSCs. Furthermore, our results indicate that the scaffold does not induce oxidative stress, inflammation, or aging in the MSCs. These findings provide valuable insights for the application of MSCs in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Sihem Aouabdi
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Taoufik Nedjadi
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Rawiah Alsiary
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| | - Fouzi Mouffouk
- Department of Chemistry, Kuwait University, Kuwait, Kuwait
| | - Hifzur Rahman Ansari
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Yang Z, Xu J, Kang T, Chen X, Zhou C. The Impact of NLRP3 Inflammasome on Osteoblasts and Osteogenic Differentiation: A Literature Review. J Inflamm Res 2024; 17:2639-2653. [PMID: 38707958 PMCID: PMC11067939 DOI: 10.2147/jir.s457927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024] Open
Abstract
Osteoblasts (OBs), which are a crucial type of bone cells, derive from bone marrow mesenchymal stem cells (MSCs). Accumulating evidence suggests inflammatory cytokines can inhibit the differentiation and proliferation of OBs, as well as interfere with their ability to synthesize bone matrix, under inflammatory conditions. NLRP3 inflammasome is closely associated with cellular pyroptosis, which can lead to excessive release of pro-inflammatory cytokines, causing tissue damage and inflammatory responses, however, the comprehensive roles of NLRP3 inflammasome in OBs and their differentiation have not been fully elucidated, making targeting NLRP3 inflammasome approaches to treat diseases related to OBs uncertain. In this review, we provide a summary of NLRP3 inflammasome activation and its impact on OBs. We highlight the significant roles of NLRP3 inflammasome in regulating OBs differentiation and function. Furthermore, current available strategies to affect OBs function and osteogenic differentiation targeting NLRP3 inflammasome are listed and analyzed. Finally, through the prospective discussion, we seek to provide novel insights into the crucial role of NLRP3 inflammasome in diseases related to OBs and offer valuable information for devising treatment strategies.
Collapse
Affiliation(s)
- Ziyuan Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Jiaan Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Ting Kang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Hangzhou, 310006, People’s Republic of China
- Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310006, People’s Republic of China
| | - Chengcong Zhou
- The First Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| |
Collapse
|
5
|
Yang SY, Hu Y, Zhao R, Zhou YN, Zhuang Y, Zhu Y, Ge XL, Lu TW, Lin KL, Xu YJ. Quercetin-loaded mesoporous nano-delivery system remodels osteoimmune microenvironment to regenerate alveolar bone in periodontitis via the miR-21a-5p/PDCD4/NF-κB pathway. J Nanobiotechnology 2024; 22:94. [PMID: 38449005 PMCID: PMC10918894 DOI: 10.1186/s12951-024-02352-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024] Open
Abstract
BACKGROUND Impaired osteo-/angiogenesis, excessive inflammation, and imbalance of the osteoimmune homeostasis are involved in the pathogenesis of the alveolar bone defect caused by periodontitis. Unfortunately, there is still a lack of ideal therapeutic strategies for periodontitis that can regenerate the alveolar bone while remodeling the osteoimmune microenvironment. Quercetin, as a monomeric flavonoid, has multiple pharmacological activities, such as pro-regenerative, anti-inflammatory, and immunomodulatory effects. Despite its vast spectrum of pharmacological activities, quercetin's clinical application is limited due to its poor water solubility and low bioavailability. RESULTS In this study, we fabricated a quercetin-loaded mesoporous bioactive glass (Quercetin/MBG) nano-delivery system with the function of continuously releasing quercetin, which could better promote the bone regeneration and regulate the immune microenvironment in the alveolar bone defect with periodontitis compared to pure MBG treatment. In particular, this nano-delivery system effectively decreased injection frequency of quercetin while yielding favorable therapeutic results. In view of the above excellent therapeutic effects achieved by the sustained release of quercetin, we further investigated its therapeutic mechanisms. Our findings indicated that under the periodontitis microenvironment, the intervention of quercetin could restore the osteo-/angiogenic capacity of periodontal ligament stem cells (PDLSCs), induce immune regulation of macrophages and exert an osteoimmunomodulatory effect. Furthermore, we also found that the above osteoimmunomodulatory effects of quercetin via macrophages could be partially blocked by the overexpression of a key microRNA--miR-21a-5p, which worked through inhibiting the expression of PDCD4 and activating the NF-κB signaling pathway. CONCLUSION In summary, our study shows that quercetin-loaded mesoporous nano-delivery system has the potential to be a therapeutic approach for reconstructing alveolar bone defects in periodontitis. Furthermore, it also offers a new perspective for treating alveolar bone defects in periodontitis by inhibiting the expression of miR-21a-5p in macrophages and thereby creating a favorable osteoimmune microenvironment.
Collapse
Affiliation(s)
- Shi-Yuan Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yue Hu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Ran Zhao
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Ning Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yu Zhuang
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Xiao-Li Ge
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting-Wei Lu
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Kai-Li Lin
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China.
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Yuan-Jin Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, China.
- College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University, Shanghai Research Institute of Stomatology, Shanghai, China.
| |
Collapse
|
6
|
Xu K, Wang H, Wu Z. Genkwanin suppresses mitochondrial dysfunction to alleviate IL-1β-elicited inflammation, apoptosis, and degradation of extracellular matrix in chondrocytes through upregulating DUSP1. CHINESE J PHYSIOL 2023; 66:284-293. [PMID: 37635488 DOI: 10.4103/cjop.cjop-d-23-00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Osteoarthritis (OA) is a form of chronic degenerative disease contributing to elevated disability rate among the elderly. Genkwanin is an active component extracted from Daphne genkwa possessing pharmacologic effects. Here, this study is designed to expound the specific role of genkwanin in OA and elaborate the probable downstream mechanism. First, the viability of chondrocytes in the presence or absence of interleukin-1 beta (IL-1β) treatment was detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay was used to assess cell apoptosis. Inflammatory response was estimated through enzyme-linked immunosorbent assay and Western blot. In addition, immunofluorescence staining and Western blot were utilized to measure the expression of extracellular matrix (ECM)-associated proteins. Dual-specificity protein phosphatase-1 (DUSP1) expression was tested by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Western blot. Following DUSP1 elevation in genkwanin-treated chondrocytes exposed to IL-1β, inflammatory response and ECM-associated factors were evaluated as forementioned. In addition, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolocarbocyanine iodide staining was to assess the mitochondrial membrane potential. Adenosine triphosphate (ATP) level was examined with ATP assay kit, and RT-qPCR was used to test mitochondrial DNA expression. Results indicated that genkwanin administration enhanced the viability while ameliorated the apoptosis, inflammatory response, and ECM degradation in IL-1β-induced chondrocytes. Besides, genkwanin treatment fortified DUSP1 expression in IL-1β-exposed chondrocytes. DUSP1 interference further offsets the impacts of genkwanin on the inflammation, ECM degradation, and mitochondrial dysfunction in IL-1β-challenged chondrocytes. In short, genkwanin enhanced DUSP1 expression to mitigate mitochondrial dysfunction, thus ameliorating IL-1β-elicited inflammation, apoptosis, and degradation of ECM in chondrocytes.
Collapse
Affiliation(s)
- Kanna Xu
- Emergency Department, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| | - Haoran Wang
- Department of Orthopedics, Hangzhou Children's Hospital, Hangzhou, Zhejiang, China
| | - Zhongqing Wu
- Department of Orthopedics, The First People's Hospital of Huzhou, Huzhou, Zhejiang, China
| |
Collapse
|
7
|
Li Y, Yao X, Lin Y, Xing Y, Liu C, Xu J, Wu D. Identification and validation of autophagy-related genes during osteogenic differentiation of bone marrow mesenchymal stem cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1364-1372. [PMID: 36474568 PMCID: PMC9699953 DOI: 10.22038/ijbms.2022.65528.14420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 10/10/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is an essential stage in bone formation. Autophagy plays a pivotal role in the self-renewal potential and pluripotency of stem cells. This study aimed to explore the function of autophagy-related genes during osteogenic differentiation of BMSCs. MATERIALS AND METHODS The differentially expressed autophagy-related genes (ARGs) were obtained from the GEO and HADb databases. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed using R software. The PPI and hub gene mining networks were constructed using the STRING database and Cytoscape. Finally, the RT-qPCR was conducted to validate the expression level of ARGs in BMSCs. RESULTS Thirty-seven differentially expressed ARGs were finally obtained, including 12 upregulated and 25 downregulated genes. GO and KEGG enrichment analysis showed that most of these genes were enriched in apoptosis and autophagy. The PPI network revealed strong interactions between differentially expressed ARGs. The expression level of differentially expressed ARGs tested by RT-qPCR showed 6 upregulated ARGs, including FOXO1, MAP1LC3C, CTSB, FOXO3, CALCOCO2, FKBP1A, and 4 downregulated ARGs, including MAPK8IP1, NRG1, VEGFA, and ITGA6 were consistent with the expression of high-throughput sequencing data. CONCLUSION We identified 37 ARGs during osteogenic differentiation using bioinformatics analysis. FOXO1, MAP1LC3C, CTSB, FOXO3, CALCOCO2, FKBP1A, MAPK8IP1, NRG1, VEGFA, and ITGA6 may regulate osteogenic differentiation of hBMSCs by involving autophagy pathway. This study provides new insight into the osteogenic differentiation of hBMSCs and may be available in developing therapeutic strategies for maxillofacial bone defects.
Collapse
Affiliation(s)
- Yan Li
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China,Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350001, China,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, 350001, China,These authors contributed eqully to this work
| | - Xiu Yao
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China,Department of Implantology, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, 200433, China,These authors contributed eqully to this work
| | - Yanjun Lin
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China,Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Yifeng Xing
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Chaowei Liu
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Jianghan Xu
- Provincial Engineering Research Center of Oral Biomaterial, Fujian Medical University, Fuzhou, Fujian, 350001, China
| | - Dong Wu
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, Fujian, 350001, China,Research Center of Dental and Craniofacial Implants, Fujian Medical University, Fuzhou, Fujian, 350001, China,Corresponding author: Dong Wu. Research Center of Dental and Craniofacial Implants, Fujian Medical University, No. 246, Yangqiao Road, Gulou District, Fuzhou, Fujian 350001, China.
| |
Collapse
|
8
|
Zhuang J, Hang R, Sun R, Ding Y, Yao X, Hang R, Sun H, Bai L. Multifunctional exosomes derived from bone marrow stem cells for fulfilled osseointegration. Front Chem 2022; 10:984131. [PMID: 36072705 PMCID: PMC9441814 DOI: 10.3389/fchem.2022.984131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 07/22/2022] [Indexed: 01/09/2023] Open
Abstract
Bone marrow mesenchymal stem cells (BMSCs) have self-renewal, multi-directional differentiation potential, and immune regulation function and are widely used for de novo bone formation. However, the wide variation in individual amplification, the potential risk of cancer cell contamination, and the need for culture time significantly limit their widespread use clinically. Alternatively, numerous studies have shown that exosomes secreted by BMSCs in the nanoscale can also affect the functionality of endothelial cells (angiogenesis), macrophages (immunomodulation), and osteoblasts/osteoclasts (osteogenesis), which is a highly promising therapy for osseointegration with pronounced advantages (e.g., safety, high efficiency, and no ethical restrictions). The review aims to summarize the multifaceted effect of BMSCs-derived exosomes on osseointegration and provide reference and basis for rapid and qualified osseointegration.
Collapse
Affiliation(s)
- Jingwen Zhuang
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Ruiyue Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ruoyue Sun
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Yanshu Ding
- Key Laboratory for Ultrafine Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China
| | - Xiaohong Yao
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Ruiqiang Hang
- Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Hui Sun
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China,*Correspondence: Hui Sun, ; Long Bai,
| | - Long Bai
- Institute of Translational Medicine, Shanghai University, Shanghai, China,Engineering Research Center for Biomedical Materials of Ministry of Education, East China University of Science and Technology, Shanghai, China,*Correspondence: Hui Sun, ; Long Bai,
| |
Collapse
|
9
|
Xu Y, Zhang M, Yang W, Xia B, Wang W, Pan X. Nootkatone protects cartilage against degeneration in mice by inhibiting NF-κB signaling pathway. Int Immunopharmacol 2021; 100:108119. [PMID: 34492535 DOI: 10.1016/j.intimp.2021.108119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 12/31/2022]
Abstract
Osteoarthritis is a common chronic disease associated with chondrocyte inflammation and cartilage matrix hydrolyzation. Studies report that IL-1β plays a critical role in osteoarthritis. Anti-inflammatory effect of nootkatone has been explored in acute and chronic inflammatory disease, thus the current study sought to explore its therapeutic effect in osteoarthritis. Notably, the effect of nootkatone in osteoarthritis has not been elucidated. Therefore, murine primary chondrocytes were extracted and ACLT induced OA mouse model was established in the current study to explore the therapeutic effect of nootkatone in OA both in vitro and in vivo. The findings showed that nootkatone inhibited inflammatory response and protected cartilage balance in murine primary chondrocyte. Further analysis showed that nootkatone suppressed inflammation and protected cartilage against degeneration induced by ACLT surgery in mice. The cellular mechanism of the protective effect of nootkatone in osteoarthritis and associated signaling pathway was identified as the NF-κB signaling pathway. In summary, the findings of the current study indicated that nootkatone is a potential therapeutic agent for OA.
Collapse
Affiliation(s)
- Yue Xu
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; Department of Pediatric Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Jinan, Shandong 250012, China
| | - Minfa Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Wanliang Yang
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Bowei Xia
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wenhan Wang
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Pan
- Department of Orthopedic Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
10
|
Kurihara M, Mukudai Y, Watanabe H, Asakura M, Abe Y, Houri A, Chikuda J, Shimane T, Shirota T. Autophagy prevents osteocyte cell death under hypoxic conditions. Cells Tissues Organs 2021; 210:326-338. [PMID: 34412050 DOI: 10.1159/000519086] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/12/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Mai Kurihara
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Yoshiki Mukudai
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Hitoshi Watanabe
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Mariko Asakura
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Yuzo Abe
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Asami Houri
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Junichiro Chikuda
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Toshikazu Shimane
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| | - Tatsuo Shirota
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|