1
|
Hashemi E, Srivastava IN, Aguirre A, Yoseph ET, Kaushal E, Awani A, Ryu JK, Akassoglou K, Talebian S, Chu P, Pisani L, Musolino P, Steinman L, Doyle K, Robinson WH, Sharpe O, Cayrol R, Orchard PJ, Lund T, Vogel H, Lenail M, Han MH, Bonkowsky JL, Van Haren KP. A Novel Mouse Model for Cerebral Inflammatory Demyelination in X-Linked Adrenoleukodystrophy: Insights into Pathogenesis and Potential Therapeutic Targets. Ann Neurol 2024. [PMID: 39467011 DOI: 10.1002/ana.27117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/30/2024]
Abstract
OBJECTIVE X-linked adrenoleukodystrophy (ALD) is caused by mutations in ABCD1, a peroxisomal gene. More than half of males with an ABCD1 mutation develop inflammatory cerebral demyelination (cALD), but underlying mechanisms remain unknown and therapies are limited. We sought to develop and characterize a mouse model of cALD to facilitate study of disease mechanisms and therapy development. METHODS We used immunoassays and immunohistochemistry to assess novel (interleukin 18 [IL-18]) and established molecular markers in cerebrospinal fluid (CSF) and postmortem brain tissue from cALD patients. We generated a cALD phenotype in Abcd1-knockout mice using a 2-hit method that combines cuprizone and experimental autoimmune encephalomyelitis models. We then used magnetic resonance imaging (MRI) and immunohistochemistry to assess the fidelity of cALD molecular markers in the mice. RESULTS Human and mouse cALD lesions shared histologic features of myelin phagocytosis, myelin loss, abundant microglial activation, T and B-cell infiltration, and astrogliosis. Compared to wild-type controls, Abcd1-knockout mice displayed more cerebral demyelination, blood-brain barrier disruption, and perivascular immune cell infiltration. This enhanced inflammatory response was associated with higher levels of fibrin deposition, oxidative stress, demyelination, and axonal injury. IL-18 immunoreactivity co-localized with perivascular monocytes/macrophages in both human and mouse brain tissue. In cALD patients, CSF IL-18 levels correlated with MRI lesion severity. INTERPRETATION Our results suggest loss of Abcd1 function in mice predisposes to more severe blood-brain barrier disruption, cerebral inflammation driven by the infiltration of peripheral immune cells, demyelination, and axonal damage, replicating human cALD features. This novel mouse model could shed light on cALD mechanisms and accelerate cALD therapy development. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Ezzat Hashemi
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Isha N Srivastava
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Alejandro Aguirre
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Ezra T Yoseph
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Esha Kaushal
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Avni Awani
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Jae K Ryu
- Gladstone Institute for Neurological Disease, San Francisco, CA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Katerina Akassoglou
- Gladstone Institute for Neurological Disease, San Francisco, CA
- Center for Neurovascular Brain Immunology at Gladstone and UCSF, San Francisco, CA
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA
| | - Shahrzad Talebian
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Pauline Chu
- Stanford Human Research Histology Core, Stanford University School of Medicine, Stanford, CA
| | - Laura Pisani
- Department of Radiology, Stanford University School of Medicine Stanford, Stanford, CA
| | - Patricia Musolino
- Department of Neurology, Massachusetts General Hospital, Boston, MA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Lawrence Steinman
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Kristian Doyle
- Department of Immunobiology, University of Arizona, Tucson, AZ
| | - William H Robinson
- Department of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA
| | - Orr Sharpe
- Department of Immunology and Rheumatology, Stanford University School of Medicine, Stanford, CA
| | - Romain Cayrol
- Department of Pathology, Clinical Department of Laboratory Medicine, University of Montreal, Quebec, Canada
| | - Paul J Orchard
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN
| | - Troy Lund
- Division of Pediatric Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN
| | - Hannes Vogel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA
| | - Max Lenail
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - May H Han
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
| | - Joshua L Bonkowsky
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT
- Brain and Spine Center, Primary Children's Hospital, Salt Lake City, UT
- Primary Children's Center for Personalized Medicine, Salt Lake City, UT
| | - Keith P Van Haren
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
2
|
Friesen E, Sheft M, Hari K, Palmer V, Zhu S, Herrera S, Buist R, Jiang D, Li XM, Del Bigio MR, Thiessen JD, Martin M. Quantitative Analysis of Early White Matter Damage in Cuprizone Mouse Model of Demyelination Using 7.0 T MRI Multiparametric Approach. ASN Neuro 2024; 16:2404366. [PMID: 39400556 DOI: 10.1080/17590914.2024.2404366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024] Open
Abstract
Magnetic Resonance Imaging (MRI) is commonly used to follow the progression of neurodegenerative conditions, including multiple sclerosis (MS). MRI is limited by a lack of correlation between imaging results and clinical presentations, referred to as the clinico-radiological paradox. Animal models are commonly used to mimic the progression of human neurodegeneration and as a tool to help resolve the paradox. Most studies focus on later stages of white matter (WM) damage whereas few focus on early stages when oligodendrocyte apoptosis has just begun. The current project focused on these time points, namely weeks 2 and 3 of cuprizone (CPZ) administration, a toxin which induces pathophysiology similar to MS. In vivo T2-weighted (T2W) and Magnetization Transfer Ratio (MTR) maps and ex vivo Diffusion Tensor Imaging (DTI), Magnetization Transfer Imaging (MTI), and relaxometry (T1 and T2) values were obtained at 7 T. Significant changes in T2W signal intensity and non-significant changes in MTR were observed to correspond to early WM damage, whereas significant changes in both corresponded with full demyelination. Some DTI metrics decrease with simultaneous increase in others, indicating acute demyelination. MTI metrics T2A, T2B, f and R were observed to have contradictory changes across CPZ administration. T1 relaxation times were observed to have stronger correlations to disease states during later stages of CPZ treatment, whereas T2 had weak correlations to early WM damage. These results all suggest the need for multiple metrics and further studies at early and late time points of demyelination. Further research is required to continue investigating the interplay between various MR metrics during all weeks of CPZ administration.
Collapse
Affiliation(s)
- Emma Friesen
- Department of Chemistry, University of Winnipeg, Winnipeg, Canada
| | - Maxina Sheft
- Department of Physics, University of Winnipeg, Winnipeg, Canada
- Massachusetts Institute of Technology, Cambridge, USA
| | - Kamya Hari
- Department of Physics, University of Winnipeg, Winnipeg, Canada
- Electronics and Communication Engineering, SSN College of Engineering, Chennai, India
| | - Vanessa Palmer
- Department of Biomedical Engineering, University of Manitoba, Winnipeg, Canada
- Cubresa Inc, Winnipeg, Canada
| | - Shenghua Zhu
- Department of Neuroradiology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Sheryl Herrera
- Department of Physics, University of Winnipeg, Winnipeg, Canada
- Cubresa Inc, Winnipeg, Canada
| | - Richard Buist
- Department of Radiology, University of Manitoba, Winnipeg, Canada
| | - Depeng Jiang
- Department of Community Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Xin-Min Li
- Department of Psychiatry, University of Alberta, Edmonton, Canada
| | - Marc R Del Bigio
- Department of Pathology, University of Manitoba, Winnipeg, Canada
| | - Jonathan D Thiessen
- Imaging Program, Lawson Health Research Institute, London, Canada
- Department of Medical Biophysics, Western University, London, Canada
| | - Melanie Martin
- Department of Physics, University of Winnipeg, Winnipeg, Canada
| |
Collapse
|
3
|
Abdelalim LR, Elnaggar YSR, Abdallah OY. Lactoferrin, chitosan double-coated oleosomes loaded with clobetasol propionate for remyelination in multiple sclerosis: Physicochemical characterization and in-vivo assessment in a cuprizone-induced demyelination model. Int J Biol Macromol 2024; 277:134144. [PMID: 39053824 DOI: 10.1016/j.ijbiomac.2024.134144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 07/10/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
Multiple sclerosis is a chronic inflammatory demyelinating disorder of the CNS characterized by continuous myelin damage accompanied by deterioration in functions. Clobetasol propionate (CP) is the most potent topical corticosteroid with serious side effects related to systemic absorption. Previous studies introduced CP for remyelination without considering systemic toxicity. This work aimed at fabrication and optimization of double coated nano-oleosomes loaded with CP to achieve brain targeting through intranasal administration. The optimized formulation was coated with lactoferrin and chitosan for the first time. The obtained double-coated oleosomes had particle size (220.07 ± 0.77 nm), zeta potential (+30.23 ± 0.41 mV) along with antioxidant capacity 9.8 μM ascorbic acid equivalents. Double coating was well visualized by TEM and significantly decreased drug release. Three different doses of CP were assessed in-vivo using cuprizone-induced demyelination in C57Bl/6 mice. Neurobehavioral tests revealed improvement in motor and cognitive functions of mice in a dose-dependent manner. Histopathological examination of the brain showed about 2.3 folds increase in corpus callosum thickness in 0.3 mg/kg CP dose. Moreover, the measured biomarkers highlighted the significant antioxidant and anti-inflammatory capacity of the formulation. In conclusion, the elaborated biopolymer-integrating nanocarrier succeeded in remyelination with 6.6 folds reduction in CP dose compared to previous studies.
Collapse
Affiliation(s)
- Lamiaa R Abdelalim
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Yosra S R Elnaggar
- Department of Pharmaceutics and pharmaceutical technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Ossama Y Abdallah
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Friesen E, Hari K, Sheft M, Thiessen JD, Martin M. Magnetic resonance metrics for identification of cuprizone-induced demyelination in the mouse model of neurodegeneration: a review. MAGMA (NEW YORK, N.Y.) 2024; 37:765-790. [PMID: 38635150 DOI: 10.1007/s10334-024-01160-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Neurodegenerative disorders, including Multiple Sclerosis (MS), are heterogenous disorders which affect the myelin sheath of the central nervous system (CNS). Magnetic Resonance Imaging (MRI) provides a non-invasive method for studying, diagnosing, and monitoring disease progression. As an emerging research area, many studies have attempted to connect MR metrics to underlying pathophysiological presentations of heterogenous neurodegeneration. Most commonly, small animal models are used, including Experimental Autoimmune Encephalomyelitis (EAE), Theiler's Murine Encephalomyelitis (TMEV), and toxin models including cuprizone (CPZ), lysolecithin, and ethidium bromide (EtBr). A contrast and comparison of these models is presented, with focus on the cuprizone model, followed by a review of literature studying neurodegeneration using MRI and the cuprizone model. Conventional MRI methods including T1 Weighted (T1W) and T2 Weighted (T2W) Imaging are mentioned. Quantitative MRI methods which are sensitive to diffusion, magnetization transfer, susceptibility, relaxation, and chemical composition are discussed in relation to studying the CPZ model. Overall, additional studies are needed to improve both the sensitivity and specificity of MRI metrics for underlying pathophysiology of neurodegeneration and the relationships in attempts to clear the clinico-radiological paradox. We therefore propose a multiparametric approach for the investigation of MR metrics for underlying pathophysiology.
Collapse
Affiliation(s)
- Emma Friesen
- Chemistry, University of Winnipeg, Winnipeg, Canada.
| | - Kamya Hari
- Physics, University of Winnipeg, Winnipeg, Canada
- Electronics and Communication Engineering, SSN College of Engineering, Chennai, India
| | - Maxina Sheft
- Physics, University of Winnipeg, Winnipeg, Canada
- Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, USA
| | - Jonathan D Thiessen
- Imaging Program, Lawson Health Research Institute, London, Canada
- Medical Biophysics, Western University, London, Canada
- Medical Imaging, Western University, London, Canada
| | | |
Collapse
|
5
|
Vélez-Uriza F, Ordaz RP, Garay E, Cisneros-Mejorado AJ, Arellano RO. N-butyl-β-carboline-3-carboxylate (β-CCB) systemic administration promotes remyelination in the cuprizone demyelinating model in mice. Sci Rep 2024; 14:13988. [PMID: 38886527 PMCID: PMC11183054 DOI: 10.1038/s41598-024-64501-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Demyelination is generated in several nervous system illnesses. Developing strategies for effective clinical treatments requires the discovery of promyelinating drugs. Increased GABAergic signaling through γ-aminobutyric acid type A receptor (GABAAR) activation in oligodendrocytes has been proposed as a promyelinating condition. GABAAR expressed in oligodendroglia is strongly potentiated by n-butyl-β-carboline-3-carboxylate (β-CCB) compared to that in neurons. Here, mice were subjected to 0.3% cuprizone (CPZ) added in the food to induce central nervous system demyelination, a well-known model for multiple sclerosis. Then β-CCB (1 mg/Kg) was systemically administered to analyze the remyelination status in white and gray matter areas. Myelin content was evaluated using Black-Gold II (BGII) staining, immunofluorescence (IF), and magnetic resonance imaging (MRI). Evidence indicates that β-CCB treatment of CPZ-demyelinated animals promoted remyelination in several white matter structures, such as the fimbria, corpus callosum, internal capsule, and cerebellar peduncles. Moreover, using IF, it was observed that CPZ intake induced an increase in NG2+ and a decrease in CC1+ cell populations, alterations that were importantly retrieved by β-CCB treatment. Thus, the promyelinating character of β-CCB was confirmed in a generalized demyelination model, strengthening the idea that it has clinical potential as a therapeutic drug.
Collapse
Affiliation(s)
- Fidel Vélez-Uriza
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México
| | - Rainald Pablo Ordaz
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México
| | - Edith Garay
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México
| | - Abraham J Cisneros-Mejorado
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México.
| | - Rogelio O Arellano
- Instituto de Neurobiología, Laboratorio de Neurofisiología Celular, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Juriquilla Querétaro, C.P. 76230, México.
| |
Collapse
|
6
|
Ding S, Shi Z, Huang K, Fan X, Li X, Zheng H, Wang L, Yan Z, Cai J. Aberrant white matter microstructure detected by automatic fiber quantification in pediatric myelin oligodendrocyte glycoprotein antibody-associated disease. Mult Scler Relat Disord 2024; 84:105483. [PMID: 38354445 DOI: 10.1016/j.msard.2024.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 02/04/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
BACKGROUND AND OBJECTIVES Myelin oligodendrocyte glycoprotein antibody-associated diseases (MOGAD) is an idiopathic inflammatory demyelinating disorder in children, for which the precise damage patterns of the white matter (WM) fibers remain unclear. Herein, we utilized diffusion tensor imaging (DTI)-based automated fiber quantification (AFQ) to identify patterns of fiber damage and to investigate the clinical significance of MOGAD-affected fiber tracts. METHODS A total of 28 children with MOGAD and 31 healthy controls were included in this study. The AFQ approach was employed to track WM fiber with 100 equidistant nodes defined along each tract for statistical analysis of DTI metrics in both the entire and nodal manner. The feature selection method was used to further screen significantly aberrant DTI metrics of the affected fiber tracts or segments for eight common machine learning (ML) to evaluate their potential in identifying MOGAD. These metrics were then correlated with clinical scales to assess their potential as imaging biomarkers. RESULTS In the entire manner, significantly reduced fractional anisotropy (FA) was shown in the left anterior thalamic radiation, arcuate fasciculus, and the posterior and anterior forceps of corpus callosum in MOGAD (all p < 0.05). In the nodal manner, significant DTI metrics alterations were widely observed across 37 segments in 10 fiber tracts (all p < 0.05), mainly characterized by decreased FA and increased radial diffusivity (RD). Among them, 14 DTI metrics in seven fiber tracts were selected as important features to establish ML models, and satisfactory discrimination of MOGAD was obtained in all models (all AUC > 0.85), with the best performance in the logistic regression model (AUC = 0.952). For those features, the FA of left cingulum cingulate and the RD of right inferior frontal-occipital fasciculus were negatively and positively correlated with the expanded disability status scale (r = -0.54, p = 0.014; r = 0.43, p = 0.03), respectively. CONCLUSION Pediatric MOGAD exhibits extensive WM fiber tract aberration detected by AFQ. Certain fiber tracts exhibit specific patterns of DTI metrics that hold promising potential as biomarkers.
Collapse
Affiliation(s)
- Shuang Ding
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Zhuowei Shi
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Kaiping Huang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xiao Fan
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xiujuan Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Helin Zheng
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Longlun Wang
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Zichun Yan
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400000, China
| | - Jinhua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China.
| |
Collapse
|
7
|
Kipp M. How to Use the Cuprizone Model to Study De- and Remyelination. Int J Mol Sci 2024; 25:1445. [PMID: 38338724 PMCID: PMC10855335 DOI: 10.3390/ijms25031445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Multiple sclerosis (MS) is an autoimmune and inflammatory disorder affecting the central nervous system whose cause is still largely unknown. Oligodendrocyte degeneration results in demyelination of axons, which can eventually be repaired by a mechanism called remyelination. Prevention of demyelination and the pharmacological support of remyelination are two promising strategies to ameliorate disease progression in MS patients. The cuprizone model is commonly employed to investigate oligodendrocyte degeneration mechanisms or to explore remyelination pathways. During the last decades, several different protocols have been applied, and all have their pros and cons. This article intends to offer guidance for conducting pre-clinical trials using the cuprizone model in mice, focusing on discovering new treatment approaches to prevent oligodendrocyte degeneration or enhance remyelination.
Collapse
Affiliation(s)
- Markus Kipp
- Rostock University Medical Center, Institute of Anatomy, 18057 Rostock, Germany
| |
Collapse
|
8
|
Chen TC, Lo YC, Li SJ, Lin YC, Chang CW, Liang YW, Laiman V, Hsiao TC, Chuang HC, Chen YY. Assessing traffic-related air pollution-induced fiber-specific white matter degradation associated with motor performance declines in aged rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115373. [PMID: 37619400 DOI: 10.1016/j.ecoenv.2023.115373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/02/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023]
Abstract
Fine particulate matter (PM2.5) is thought to exacerbate Parkinson's disease (PD) in the elderly, and early detection of PD progression may prevent further irreversible damage. Therefore, we used diffusion tensor imaging (DTI) for probing microstructural changes after late-life chronic traffic-related PM2.5 exposure. Herein, 1.5-year-old Fischer 344 rats were exposed to clean air (control), high-efficiency particulate air (HEPA)-filtered ambient air (HEPA group), and ambient traffic-related PM2.5 (PM2.5 group, 9.933 ± 1.021 µg/m3) for 3 months. Rotarod test, DTI tractographic analysis, and immunohistochemistry were performed in the end of study period. Aged rats exposed to PM2.5 exhibited motor impairment with decreased fractional anisotropy and tyrosine hydroxylase expression in olfactory and nigrostriatal circuits, indicating disrupted white matter integrity and dopaminergic (DA) neuronal loss. Additionally, increased radial diffusivity and lower expression of myelin basic protein in PM2.5 group suggested ageing progression of demyelination exacerbated by PM2.5 exposure. Significant production of tumor necrosis factor-α was also observed after PM2.5 exposure, revealing potential inflammation of injury to multiple fiber tracts of DA pathways. Microstructural changes demonstrated potential links between PM2.5-induced inflammatory white matter demyelination and behavioral performance, with indication of pre-manifestation of DTI-based biomarkers for early detection of PD progression in the elderly.
Collapse
Affiliation(s)
- Ting-Chieh Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Yu-Chun Lo
- Ph.D. Program in Medical Neuroscience, Taipei Medical University, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan
| | - Ssu-Ju Li
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Yi-Chen Lin
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Ching-Wen Chang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Yao-Wen Liang
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan
| | - Vincent Laiman
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing St., Taipei 11031, Taiwan; Department of Anatomical Pathology, Faculty of Medicine, Public Health, and Nursing, Universitas Gadjah Mada - Dr. Sardjito Hospital, Yogyakarta 55281, Indonesia
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, 1 Roosevelt Rd., Section 4, Taipei 10617, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, 250 Wu-Xing St., Taipei 11031, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, 291 Zhongzheng Rd., Zhonghe Dist., New Taipei City 23561, Taiwan; Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, 111 Xinglong Rd., Section 3, Wenshan Dist., Taipei 11696, Taiwan; National Heart & Lung Institute, Imperial College London, London SW3 6LY, UK.
| | - You-Yin Chen
- Department of Biomedical Engineering, National Yang Ming Chiao Tung University, 155 Linong St., Section 2, Taipei 11221, Taiwan; Ph.D. Program in Medical Neuroscience, Taipei Medical University, Taipei Medical University, No. 250 Wu-Xing St., Taipei 11031, Taiwan.
| |
Collapse
|
9
|
Grothe M, Jochem K, Strauss S, Langner S, Kirsch M, Hoffeld K, Penner IK, Nagels G, Klepzig K, Domin M, Lotze M. Performance in information processing speed is associated with parietal white matter tract integrity in multiple sclerosis. Front Neurol 2022; 13:982964. [DOI: 10.3389/fneur.2022.982964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/20/2022] [Indexed: 11/06/2022] Open
Abstract
BackgroundThe Symbol Digit Modalities Test (SDMT) is most frequently used to test processing speed in patients with multiple sclerosis (MS). Functional imaging studies emphasize the importance of frontal and parietal areas for task performance, but the influence of frontoparietal tracts has not been thoroughly studied. We were interested in tract-specific characteristics and their association with processing speed in MS patients.MethodsDiffusion tensor imaging was obtained in 100 MS patients and 24 healthy matched controls to compare seed-based tract characteristics descending from the superior parietal lobule [Brodman area 7A (BA7A)], atlas-based tract characteristics from the superior longitudinal fasciculus (SLF), and control tract characteristics from the corticospinal tract (CST) and their respective association with ability on the SDMT.ResultsPatients had decreased performance on the SDMT and decreased white matter volume (each p < 0.05). The mean fractional anisotropy (FA) for the BA7A tract and CST (p < 0.05), but not the SLF, differed between MS patients and controls. Furthermore, only the FA of the SLF was positively associated with SDMT performance even after exclusion of the lesions within the tract (r = 0.25, p < 0.05). However, only disease disability and total white matter volume were associated with information processing speed in a linear regression model.ConclusionsProcessing speed in MS is associated with the structural integrity of frontoparietal white matter tracts.
Collapse
|
10
|
Motor Behavioral Deficits in the Cuprizone Model: Validity of the Rotarod Test Paradigm. Int J Mol Sci 2022; 23:ijms231911342. [PMID: 36232643 PMCID: PMC9570024 DOI: 10.3390/ijms231911342] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Multiple Sclerosis (MS) is a neuroinflammatory disorder, which is histopathologically characterized by multifocal inflammatory demyelinating lesions affecting both the central nervous system’s white and grey matter. Especially during the progressive phases of the disease, immunomodulatory treatment strategies lose their effectiveness. To develop novel progressive MS treatment options, pre-clinical animal models are indispensable. Among the various different models, the cuprizone de- and remyelination model is frequently used. While most studies determine tissue damage and repair at the histological and ultrastructural level, functional readouts are less commonly applied. Among the various overt functional deficits, gait and coordination abnormalities are commonly observed in MS patients. Motor behavior is mediated by a complex neural network that originates in the cortex and terminates in the skeletal muscles. Several methods exist to determine gait abnormalities in small rodents, including the rotarod testing paradigm. In this review article, we provide an overview of the validity and characteristics of the rotarod test in cuprizone-intoxicated mice.
Collapse
|
11
|
Domin M, Mihai GP, Platz T, Lotze M. Swallowing function in the chronic stage following stroke is associated with white matter integrity of the callosal tract between the interhemispheric S1 swallowing representation areas. Neuroimage Clin 2022; 35:103093. [PMID: 35772193 PMCID: PMC9253494 DOI: 10.1016/j.nicl.2022.103093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/08/2022] [Accepted: 06/19/2022] [Indexed: 11/06/2022]
Abstract
Swallowing performance was tested in dysphagic patients following stroke. M1 and S1 callosal tracts relevant for swallowing was mapped in the HCP-dataset. S1 and M1 swallowing tracts were overlapping between in house and HCP datasets. Swallowing specific callosal tracts showed lower FA for patients compared to HCs. Integrity of S1 callosal fibres (FA) was associated with swallowing performance.
Sensorimotor representations of swallowing in pre- and postcentral gyri of both cerebral hemispheres are interconnected by callosal tracts. We were interested in (1) the callosal location of fibers interconnecting the precentral gyri (with the primary motor cortex; M1) and the postcentral gyri (with the primary somatosensory cortex; S1) relevant for swallowing, and (2) the importance of their integrity given the challenges of swallowing compliance after recovery of dysphagia following stroke. We investigated 17 patients who had almost recovered from dysphagia in the chronic stage following stroke and age-matched and gender-matched healthy controls. We assessed their swallowing compliance, investigating swallowing of a predefined bolus in one swallowing movement in response to a ‘go’ signal when in a lying position. A somatotopic representation of swallowing was mapped for the pre- and postcentral gyrus, and callosal tract location between these regions was compared to results for healthy participants. We applied multi-directional diffusion-weighted imaging of the brain in patients and matched controls to calculate fractional anisotropy (FA) as a tract integrity marker for M1/S1 callosal fibers. Firstly, interconnecting callosal tract maps were well spatially separated for M1 and S1, but were overlapped for somatotopic differentiation within M1 and S1 in healthy participants’ data (HCP: head/face representation; in house dataset: fMRI-swallowing representation in healthy volunteers). Secondly, the FA for both callosal tracts, connecting M1 and S1 swallowing representations, were decreased for patients when compared to healthy volunteers. Thirdly, integrity of callosal fibers interconnecting S1 swallowing representation sites was associated with effective swallowing compliance. We conclude that somatosensory interaction between hemispheres is important for effective swallowing in the case of a demanding task undertaken by stroke survivors with good swallowing outcome from dysphagia.
Collapse
Affiliation(s)
- M Domin
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University of Greifswald, Germany
| | - G P Mihai
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University of Greifswald, Germany; AICURA Medical GmbH, Berlin, Germany
| | - T Platz
- BDH-Klinik Greifswald, Institute for Neurorehabilitation and Evidence-Based Practice, "An-Institut", University of Greifswald, Greifswald, Germany; Neurorehabilitation Research Group, University Medical Centre, Greifswald, Germany
| | - M Lotze
- Functional Imaging Unit, Diagnostic Radiology and Neuroradiology, University of Greifswald, Germany
| |
Collapse
|
12
|
Dehpour AR, Khaledi E, Noori T, Mohammadi-Farani A, Delphi L, Sureda A, Sobarzo-Sanchez E, Shirooie S. Dapsone reduced cuprizone-induced demyelination via targeting Nrf2 and IKB in C57BL/6 mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:675-682. [PMID: 35949308 PMCID: PMC9320209 DOI: 10.22038/ijbms.2022.64993.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/31/2022] [Indexed: 11/21/2022]
Abstract
Objectives Multiple Sclerosis (MS) is an inflammatory disorder wherein the myelin of nerve cells in the central nervous system is damaged. In the current study, we assessed the effect of Dapsone (DAP) on the improvement of behavioral dysfunction and preservation of myelin in the cuprizone (CPZ) induced demyelination model via targeting Nrf2 and IKB. Materials and Methods MS was induced in C57BL/6 mice through diet supplementation of CPZ (0.2%) for 6 weeks, and DAP (12.5 mg/kg/day; IP) was administered for the last 2 weeks of treatment. Pole test and rotarod performance test, LFB and H&E staining, and Immunohistochemistry (IHC) staining of p-Nrf2 and p-IKB were performed. Furthermore, superoxide dismutase (SOD) and nitrite were measured. Results DAP treatment prevented body loss induced by CPZ (P<0.001). Pole test showed that CPZ increased latency time to fall (P<0.0001) but the latency to reach the floor in the DAP-CPZ group was significantly shorter (P<0.0001). Rotarod performance test showed the effect of CPZ in reducing fall time in the CPZ group (P<0.0014); however, DAP significantly increased fall time (P=0.0012). In LFB staining, DAP reduced demyelination induced by CPZ. CPZ significantly decreased p-Nrf2 and elevated p-IKB levels compared with the control group (P<0.0001), but in DAP-treated groups markedly modified these changes (P<0.0001). CPZ increased the brain nitrite levels and reduced SOD activity, but in DAP-treated considerably reversed CPZ-induced changes. Conclusion These data support the suggestion that the beneficial properties of DAP on the CPZ-induced demyelination are mediated by targeting Nrf2 and NF-kB pathways.
Collapse
Affiliation(s)
- Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran,Experimental Medicine Research Center, Tehran University of medical sciences, Tehran, Iran
| | - Ehsan Khaledi
- Student Research Committee, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tayebeh Noori
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Mohammadi-Farani
- Medical Plant Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran,Department of Physiology and Pharmacology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Ladan Delphi
- Animal Biology Department, Faculty of Biology, College of Sciences, University of Tehran, Tehran, Iran
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress (NUCOX) and Health Research Institute of Balearic Islands (IdISBa), University of Balearic Islands, Palma de Mallorca E-07122, Balearic Islands, Spain,CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid
| | - Eduardo Sobarzo-Sanchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Chile,Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, Spain
| | - Samira Shirooie
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran,Corresponding author: Samira Shirooie. Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
Fractional anisotropy helps to differentiate the optic nerve impairment between neuromyelitis optica spectrum disorders and multiple sclerosis. Eur Radiol 2022; 32:6158-6166. [PMID: 35420298 DOI: 10.1007/s00330-022-08779-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 03/18/2022] [Accepted: 03/26/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To assess the characteristics of optic nerve impairment between neuromyelitis optica spectrum disorders (NMOSD) and multiple sclerosis (MS) patients by fractional anisotropy (FA). METHODS Thirty-one NMOSD patients, 25 MS patients, and 17 heathy controls (HC) who underwent optic nerve DTI were included. The optic nerves of the NMOSD and MS patients were divided into vision-impaired (VI) subgroups and normal-appearing (NA) subgroups according to visual status, respectively. FA values were measured in the anterior, middle, and posterior segments of each intraorbital optic nerve. RESULTS FA values in VI NMOSD were significantly decreased in the whole optic nerve, especially the posterior segment of the optic nerve (p < 0.001). FA values measured in the anterior and middle segments of the optic nerve in VI MS were significantly decreased as compared to those in the HC (p < 0.05). Between NMOSD and MS, FA values in the posterior segment of the optic nerve showed significant differences (VI NMOSD vs. VI MS, 0.458 ± 0.097 vs. 0.568 ± 0.098, p < 0.001; NA NMOSD vs. NA MS, 0.568 ± 0.098 vs. 0.600 ± 0.085, p = 0.041, respectively). The signal intensity ratio (SIR) in the posterior segment of the optic nerve was significantly increased in VI NMOSD as compared with VI MS (p = 0.002). The combination of SIR and FA for distinguishing VI NMOSD from VI MS resulted in sensitivity, specificity, and positive and negative predictive values of 86.49%, 80.00%, 88.9%, and 76.2%, respectively. CONCLUSION FA could quantify the characteristics of NMOSD- and MS-related optic nerve impairment. DTI was a simple and effective imaging tool to differentiate between the two. KEY POINTS • NMOSD-related optic nerve impairment is extensive, often greater than half of the optic nerve, with the most significant involvement of the posterior segment of the optic nerve. • MS-related optic nerve impairment is more limited than NMOSD, and anterior and middle optic nerve involvement is common. • Optic nerve DTI is a convenient and effective imaging tool that can help characterize NMOSD and MS.
Collapse
|
14
|
Wilczynski E, Sasson E, Eliav U, Navon G, Nevo U. An in vivo implementation of the MEX MRI for myelin fraction of mice brain. MAGMA (NEW YORK, N.Y.) 2022; 35:267-276. [PMID: 34357453 DOI: 10.1007/s10334-021-00950-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/11/2021] [Accepted: 07/26/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Magnetization EXchange (MEX) sequence measures a signal linearly dependent on the myelin proton fraction by selective suppression of water magnetization and a recovery period. Varying the recovery period enables extraction of the percentile fraction of myelin bound protons. We aim to demonstrate the MEX sequence sensitivity to the fraction of protons associated with myelin in mice brain, in vivo. METHODS The cuprizone mouse model was used to manipulate the myelin content. Mice fed cuprizone (n = 15) and normal chow (n = 8) were imaged in vivo using MEX sequence. MR images were segmented into corpus callosum and internal capsule (white matter) and cortical gray matter, and fitted to the recovery equation. Results were analyzed with correlation to MWF and histopathology. RESULTS The extracted parameters show significant differences in the corpus callosum between the cuprizone and control groups. The cuprizone group exhibited reduced myelin fraction 26.5% (P < 0.01). The gray matter values were less affected, with 13.5% reduction (P < 0.05); no changes were detected in the internal capsule. Results were validated by MWF scans and good correlation to the histology analysis (R2 = 0.685). CONCLUSION The results of this first in vivo implementation of the MEX sequence provide a quantitative measure of demyelination in brain white matter.
Collapse
Affiliation(s)
- Ella Wilczynski
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Efrat Sasson
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uzi Eliav
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gil Navon
- School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Uri Nevo
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel. .,Sagol School of Neuroscience, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
15
|
Zhang X, Huang N, Xiao L, Wang F, Li T. Replenishing the Aged Brains: Targeting Oligodendrocytes and Myelination? Front Aging Neurosci 2021; 13:760200. [PMID: 34899272 PMCID: PMC8656359 DOI: 10.3389/fnagi.2021.760200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Aging affects almost all the aspects of brain functions, but the mechanisms remain largely undefined. Increasing number of literatures have manifested the important role of glial cells in regulating the aging process. Oligodendroglial lineage cell is a major type of glia in central nervous system (CNS), composed of mature oligodendrocytes (OLs), and oligodendroglia precursor cells (OPCs). OLs produce myelin sheaths that insulate axons and provide metabolic support to meet the energy demand. OPCs maintain the population throughout lifetime with the abilities to proliferate and differentiate into OLs. Increasing evidence has shown that oligodendroglial cells display active dynamics in adult and aging CNS, which is extensively involved in age-related brain function decline in the elderly. In this review, we summarized present knowledge about dynamic changes of oligodendroglial lineage cells during normal aging and discussed their potential roles in age-related functional decline. Especially, focused on declined myelinogenesis during aging and underlying mechanisms. Clarifying those oligodendroglial changes and their effects on neurofunctional decline may provide new insights in understanding aging associated brain function declines.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
- Department of Ophthalmology, The General Hospital of Western Theater Command, Chengdu, China
| | - Nanxin Huang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Lan Xiao
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei Wang
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tao Li
- Department of Histology and Embryology, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|