1
|
Bailie AE, Sansom HG, Fisher RS, Watabe R, Tor Y, Jones AC, Magennis SW. Ultrasensitive detection of a responsive fluorescent thymidine analogue in DNA via pulse-shaped two-photon excitation. Phys Chem Chem Phys 2024; 26:26823-26833. [PMID: 39404501 PMCID: PMC11476554 DOI: 10.1039/d4cp03391d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
Fluorescent base analogues (FBAs) are versatile nucleic acid labels that can replace a native nucleobase, while maintaining base pairing and secondary structure. Following the recent demonstration that free FBAs can be detected at the single-molecule level, the next goal is to achieve this level of detection sensitivity in oligonucleotides. Due to the short-wavelength absorption of most FBAs, multiphoton microscopy has emerged as a promising approach to single-molecule detection. We report the multiphoton-induced fluorescence of 5-(5-(4-methoxyphenyl)thiophen-2-yl)-6-aza-uridine (MeOthaU), a polarity-sensitive fluorescent thymidine analogue, as a nucleoside, and in two single-stranded deoxyribo-oligonucleotides, with and without their complementary strands. Ensemble steady-state and time-resolved measurements in dioxane, following one-photon and two-photon excitation, reveals both strongly and weakly emissive species, assigned as rotamers, while in Tris buffer there are additional non-emissive states, which are attributed to tautomeric forms populated in aqueous environments. The two-photon (2P) brightness for MeOthaU is highest as the free nucleoside in dioxane (10 GM) and lowest as the free nucleoside in Tris buffer (0.05 GM). The species-averaged 2P brightness values in DNA are higher for the single strands (0.66 and 0.82 GM for sequence context AXA and AXT, respectively, where X is MeOthaU) than in the duplex (0.31 and 0.25 GM for AXA and AXT, respectively). Using 2P microscopy with pulse-shaped broadband excitation, we were able to detect single- and double-stranded oligos with a molecular brightness of 0.8-0.9 kHz per molecule. This allowed the detection of as few as 7 DNA molecules in the focus, making it the brightest responsive FBA in an oligonucleotide reported to date.
Collapse
Affiliation(s)
- Alexandra E Bailie
- EaStCHEM School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.
| | - Henry G Sansom
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK.
| | - Rachel S Fisher
- EaStCHEM School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.
| | - Ryo Watabe
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anita C Jones
- EaStCHEM School of Chemistry, The University of Edinburgh, West Mains Road, Edinburgh, EH9 3JJ, UK.
| | - Steven W Magennis
- School of Chemistry, University of Glasgow, Joseph Black Building, University Avenue, Glasgow, G12 8QQ, UK.
| |
Collapse
|
2
|
Pfeiffer P, Nilsson J, Gallud A, Baladi T, Le HN, Bood M, Lemurell M, Dahlén A, Grøtli M, Esbjörner E, Wilhelmsson L. Metabolic RNA labeling in non-engineered cells following spontaneous uptake of fluorescent nucleoside phosphate analogues. Nucleic Acids Res 2024; 52:10102-10118. [PMID: 39162218 PMCID: PMC11417403 DOI: 10.1093/nar/gkae722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/04/2024] [Accepted: 08/07/2024] [Indexed: 08/21/2024] Open
Abstract
RNA and its building blocks play central roles in biology and have become increasingly important as therapeutic agents and targets. Hence, probing and understanding their dynamics in cells is important. Fluorescence microscopy offers live-cell spatiotemporal monitoring but requires labels. We present two fluorescent adenine analogue nucleoside phosphates which show spontaneous uptake and accumulation in cultured human cells, likely via nucleoside transporters, and show their potential utilization as cellular RNA labels. Upon uptake, one nucleotide analogue, 2CNqAXP, localizes to the cytosol and the nucleus. We show that it could then be incorporated into de novo synthesized cellular RNA, i.e. it was possible to achieve metabolic fluorescence RNA labeling without using genetic engineering to enhance incorporation, uptake-promoting strategies, or post-labeling through bio-orthogonal chemistries. By contrast, another nucleotide analogue, pAXP, only accumulated outside of the nucleus and was rapidly excreted. Consequently, this analogue did not incorporate into RNA. This difference in subcellular accumulation and retention results from a minor change in nucleobase chemical structure. This demonstrates the importance of careful design of nucleoside-based drugs, e.g. antivirals to direct their subcellular localization, and shows the potential of fine-tuning fluorescent base analogue structures to enhance the understanding of the function of such drugs.
Collapse
Affiliation(s)
- Pauline Pfeiffer
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - Jesper R Nilsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- LanteRNA (Stealth Labels Biotech AB), c/o Chalmers Ventures AB, Vera Sandbergs allé 8, SE-41296 Gothenburg, Sweden
| | - Audrey Gallud
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Advanced Drug Delivery, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, SE-43181 Gothenburg, Sweden
| | - Tom Baladi
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Hoang-Ngoan Le
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mattias Bood
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Chemistry and Molecular Biology, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Malin Lemurell
- Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Anders Dahlén
- Oligonucleotide Discovery, Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Morten Grøtli
- Department of Chemistry and Molecular Biology, University of Gothenburg, P.O. Box 462, SE-40530 Gothenburg, Sweden
| | - Elin K Esbjörner
- Department of Life Sciences, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Gothenburg, Sweden
| |
Collapse
|
3
|
Le HN, Kuchlyan J, Baladi T, Albinsson B, Dahlén A, Wilhelmsson LM. Synthesis and photophysical characterization of a pH-sensitive quadracyclic uridine (qU) analogue. Chemistry 2024:e202303539. [PMID: 38230625 DOI: 10.1002/chem.202303539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Fluorescent base analogues (FBAs) have become useful tools for applications in biophysical chemistry, chemical biology, live-cell imaging, and RNA therapeutics. Herein, two synthetic routes towards a novel FBA of uracil named qU (quadracyclic uracil/uridine) are described. The qU nucleobase bears a tetracyclic fused ring system and is designed to allow for specific Watson-Crick base pairing with adenine. We find that qU absorbs light in the visible region of the spectrum and emits brightly with a quantum yield of 27 % and a dual-band character in a wide pH range. With evidence, among other things, from fluorescence lifetime measurements we suggest that this dual emission feature results from an excited-state proton transfer (ESPT) process. Furthermore, we find that both absorption and emission of qU are highly sensitive to pH. The high brightness in combination with excitation in the visible and pH responsiveness makes qU an interesting native-like nucleic acid label in spectroscopy and microscopy applications in, for example, the field of mRNA and antisense oligonucleotide (ASO) therapeutics.
Collapse
Affiliation(s)
- Hoang-Ngoan Le
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - Jagannath Kuchlyan
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Tom Baladi
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - Bo Albinsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| | - Anders Dahlén
- Cell Gene and RNA Therapy, Discovery Science, BioPharmaceuticals R&D, AstraZeneca, Pepparedsleden 1, 431 50, Gothenburg, Sweden
| | - L Marcus Wilhelmsson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296, Gothenburg, Sweden
| |
Collapse
|
4
|
Yamaji R, Nakagawa O, Kishimoto Y, Fujii A, Matsumura T, Nakayama T, Kamada H, Osawa T, Yamaguchi T, Obika S. Synthesis and physical and biological properties of 1,3-diaza-2-oxophenoxazine-conjugated oligonucleotides. Bioorg Med Chem 2022; 72:116972. [DOI: 10.1016/j.bmc.2022.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/26/2022]
|
5
|
Aralov AV, Gubina N, Cabrero C, Tsvetkov VB, Turaev AV, Fedeles BI, Croy RG, Isaakova EA, Melnik D, Dukova S, Ryazantsev DY, Khrulev AA, Varizhuk AM, González C, Zatsepin TS, Essigmann JM. 7,8-Dihydro-8-oxo-1,N6-ethenoadenine: an exclusively Hoogsteen-paired thymine mimic in DNA that induces A→T transversions in Escherichia coli. Nucleic Acids Res 2022; 50:3056-3069. [PMID: 35234900 PMCID: PMC8989528 DOI: 10.1093/nar/gkac148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
This work investigated the structural and biological properties of DNA containing 7,8-dihydro-8-oxo-1,N6-ethenoadenine (oxo-ϵA), a non-natural synthetic base that combines structural features of two naturally occurring DNA lesions (7,8-dihydro-8-oxoadenine and 1,N6-ethenoadenine). UV-, CD-, NMR spectroscopies and molecular modeling of DNA duplexes revealed that oxo-ϵA adopts the non-canonical syn conformation (χ = 65º) and fits very well among surrounding residues without inducing major distortions in local helical architecture. The adduct remarkably mimics the natural base thymine. When considered as an adenine-derived DNA lesion, oxo-ϵA was >99% mutagenic in living cells, causing predominantly A→T transversion mutations in Escherichia coli. The adduct in a single-stranded vector was not repaired by base excision repair enzymes (MutM and MutY glycosylases) or the AlkB dioxygenase and did not detectably affect the efficacy of DNA replication in vivo. When the biological and structural data are viewed together, it is likely that the nearly exclusive syn conformation and thymine mimicry of oxo-ϵA defines the selectivity of base pairing in vitro and in vivo, resulting in lesion pairing with A during replication. The base pairing properties of oxo-ϵA, its strong fluorescence and its invisibility to enzymatic repair systems in vivo are features that are sought in novel DNA-based probes and modulators of gene expression.
Collapse
Affiliation(s)
- Andrey V Aralov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Nina Gubina
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Institute of Theoretical and Experimental Biophysics RAS, Pushchino 142290, Russia
| | - Cristina Cabrero
- Instituto de Química-Física Rocasolano (IQFR-CSIC), Madrid 28006, Spain
| | - Vladimir B Tsvetkov
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia.,World-Class Research Center "Digital biodesign and personalized healthcare", Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Anton V Turaev
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Bogdan I Fedeles
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert G Croy
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ekaterina A Isaakova
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia
| | - Denis Melnik
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Svetlana Dukova
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia
| | - Dmitriy Y Ryazantsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Alexei A Khrulev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow 117997, Russia
| | - Anna M Varizhuk
- Federal Research and Clinical Center of Physical Chemical Medicine of Federal Medical Biological Agency, Moscow 119435, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Carlos González
- Instituto de Química-Física Rocasolano (IQFR-CSIC), Madrid 28006, Spain
| | - Timofei S Zatsepin
- Center for Life Sciences, Skolkovo Institute of Science and Technology, Moscow 143026, Russia.,Chemistry Department, Lomonosov Moscow State University, Moscow 119992, Russia
| | - John M Essigmann
- Department of Biological Engineering, Department of Chemistry and Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
6
|
Enmark M, Häggström J, Samuelsson J, Fornstedt T. Building machine-learning-based model for retention time and resolution predictions in ion pair chromatography of oligonucleotides. J Chromatogr A 2022; 1671:462999. [DOI: 10.1016/j.chroma.2022.462999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/29/2023]
|