1
|
Kamińska K, Wiercigroch E, Małek K, Grzesiak M. Biomolecular composition of porcine ovarian follicles following in vitro treatment of vitamin D 3 and insulin alone or in combination. Reprod Biol 2023; 23:100818. [PMID: 37862827 DOI: 10.1016/j.repbio.2023.100818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/12/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
The study aimed to analyze changes in biomolecular composition of granulosa and theca interna cells of porcine ovarian follicles following in vitro treatment of vitamin D3 and insulin alone or in combination. Medium antral follicles (n = 4/each group) were cultured alone (C; control) or in the presence of 1α,25(OH)2D3 (VD; 100 ng/mL) and insulin (I; 10 ng/mL) separately or in combination, VD and I (VD+I). Then paraplast-embedded ovarian follicles were used for Fourier Transform Infrared (FTIR) spectroscopy and respective histological stainings. FTIR analysis revealed changes in the content of fibrous proteins (mainly collagens) within theca interna following vitamin D3 and insulin co-administration that was verified by Masson's trichrome staining. Treatment-dependent differences were also observed in the secondary structure of proteins, indicating enhanced conversion to α-helices in response to vitamin D3 and insulin action/interaction in both follicular compartments. In the granulosa and theca interna layers, tendency to lower DNA content in the VD+I group was noted and confirmed by Fulgen's staining. Finally, altered monosaccharides production in both follicular layers was found. Based on FTIR results, it is possible to attribute the observed alterations to biological processes that could be regulated by vitamin D3 and insulin in the porcine ovarian follicles.
Collapse
Affiliation(s)
- Kinga Kamińska
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Poland; Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Ewelina Wiercigroch
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Kamilla Małek
- Department of Chemical Physics, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
| | - Małgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland.
| |
Collapse
|
2
|
Rusak A, Buzalewicz I, Mrozowska M, Wiatrak B, Haczkiewicz-Leśniak K, Olbromski M, Kmiecik A, Krzyżak E, Pietrowska A, Moskal J, Podhorska-Okołów M, Podbielska H, Dzięgiel P. Multimodal study of CHI3L1 inhibition and its effect on angiogenesis, migration, immune response and refractive index of cellular structures in glioblastoma. Biomed Pharmacother 2023; 161:114520. [PMID: 36921538 DOI: 10.1016/j.biopha.2023.114520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Glioblastoma is one of the most aggressive tumours with a poor response to treatment and a poor prognosis for patients. One of the proteins expressed in glioblastoma tissue is CHI3L1 (YKL-40), which is upregulated and known for its angiogenesis-supporting and pro-tumour immunomodulatory effects in a variety of cancers. In this paper we present the anti-angiogenic, anti-migratory and immunomodulatory effects of the compound G721-0282, an inhibitor of CHI3L1. The inhibitor-induced changes were investigated using conventional techniques as well as the novel label-free digital holographic tomography (DHT), a quantitative phase imaging technique that allows the reconstruction of the refractive index (RI), which is used as an image contrast for 3D visualisation of living cells. DHT allowed digital staining of individual cells and intercellular structures based only on their specific RI. Quantitative spatially resolved analysis of the RI data shows that the concentration of G721-0282 leads to significant changes in the density of cells and their intracellular structures (in particular the cytoplasm and nucleus), in the volume of lipid droplets and in protein concentrations. Studies in the U-87 MG glioblastoma cell line, THP-1 monocytes differentiated into macrophages, human microvascular endothelial cells (HMEC-1) and in the spheroid model of glioblastoma composed of U-87 MG, HMEC-1 and macrophages suggest that inhibition of CHI3L1 may have potential in the antitumour treatment of glioblastoma. In this paper, we also propose a spheroid model for in vitro studies that mimics this type of tumour.
Collapse
Affiliation(s)
- Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Igor Buzalewicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze S. Wyspianskiego St., 50-370 Wroclaw, Poland.
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, J. Mikulicza-Radeckiego 2 Street, 50-345 Wroclaw, Poland.
| | - Katarzyna Haczkiewicz-Leśniak
- Department of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St, 50-368 Wroclaw, Poland.
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Edward Krzyżak
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556 Wroclaw, Poland.
| | - Aleksandra Pietrowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze S. Wyspianskiego St., 50-370 Wroclaw, Poland.
| | - Jakub Moskal
- Department of Neurosurgery, Poznan University of Medical Sciences, S. Przybyszewskiego 49 St., 60-355 Poznan, Poland.
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St, 50-368 Wroclaw, Poland.
| | - Halina Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze S. Wyspianskiego St., 50-370 Wroclaw, Poland.
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; Department of Physiotherapy, University School of Physical Education, I. Paderewskiego 35 Al., 51-612 Wroclaw, Poland.
| |
Collapse
|
3
|
Quantitative Phase Imaging Detecting the Hypoxia-Induced Patterns in Healthy and Neoplastic Human Colonic Epithelial Cells. Cells 2022; 11:cells11223599. [PMID: 36429026 PMCID: PMC9688862 DOI: 10.3390/cells11223599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Hypoxia is a frequent phenomenon during carcinogenesis and may lead to functional and structural changes in proliferating cancer cells. Colorectal cancer (CRC) is one of the most common neoplasms in which hypoxia is associated with progression. The aim of this study was to assess the optical parameters and microanatomy of CRC and the normal intestinal epithelium cells using the digital holotomography (DHT) method. The examination was conducted on cancer (HT-29, LoVo) and normal colonic cells (CCD-18Co) cultured in normoxic and hypoxic environments. The assessment included optical parameters such as the refractive index (RI) and dry mass as well as the morphological features. Hypoxia decreased the RI in all cells as well as in their cytoplasm, nucleus, and nucleoli. The opposite tendency was noted for spheroid-vesicular structures, where the RI was higher for the hypoxic state. The total volume of hypoxic CCD-18Co and LoVo cells was decreased, while an increase in this parameter was observed for HT-29 cells. Hypoxia increased the radius and cell volume, including the dry mass of the vesicular content. The changes in the optics and morphology of hypoxic cells may suggest the possibility of using DHT in the detection of circulating tumor cells (CTCs).
Collapse
|
4
|
Beton K, Brożek-Płuska B. Biochemistry and Nanomechanical Properties of Human Colon Cells upon Simvastatin, Lovastatin, and Mevastatin Supplementations: Raman Imaging and AFM Studies. J Phys Chem B 2022; 126:7088-7103. [PMID: 36083294 PMCID: PMC9511485 DOI: 10.1021/acs.jpcb.2c03724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
One of the most important areas of medical science is
oncology,
which is responsible for both the diagnostics and treatment of cancer
diseases. Over the years, there has been an intensive development
of cancer diagnostics and treatment. This paper shows the comparison
of normal (CCD-18Co) and cancerous (CaCo-2) cell lines of the human
gastrointestinal tract on the basis of nanomechanical and biochemical
properties to obtain information on cancer biomarkers useful in oncological
diagnostics. The research techniques used were Raman spectroscopy
and imaging and atomic force microscopy (AFM). In addition, the studies
also included the effect of the statin compounds—mevastatin,
lovastatin, and simvastatin—and their influence on biochemical
and nanomechanical changes of cell properties using Raman imaging
and AFM techniques. The cytotoxicity of statins was determined using
XTT tests.
Collapse
Affiliation(s)
- Karolina Beton
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| | - Beata Brożek-Płuska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland
| |
Collapse
|
5
|
Salerno M, Cocimano G, Roccuzzo S, Russo I, Piombino-Mascali D, Márquez-Grant N, Zammit C, Esposito M, Sessa F. New Trends in Immunohistochemical Methods to Estimate the Time since Death: A Review. Diagnostics (Basel) 2022; 12:diagnostics12092114. [PMID: 36140515 PMCID: PMC9497899 DOI: 10.3390/diagnostics12092114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 02/04/2023] Open
Abstract
The identification of a reliable and accurate post-mortem interval (PMI) is a major challenge in the field of forensic sciences and criminal investigation. Several laboratory techniques have recently been developed that offer a better contribution to the estimation of PMI, in addition to the traditional physical or physico-chemical (body cooling, lividity, radiocarbon dating, rigor mortis), chemical (autolysis), microbiological (putrefaction), entomological, as well as botanical parameters. Molecular biology (degradation pattern of macromolecules such as proteins, DNA, RNA), biochemical analysis of biological fluids (such as blood, cerebrospinal fluid, and vitreous humor), and immunohistochemistry are some of the most recent technological innovations. A systematic review of the literature was performed with the aim of presenting an up-to-date overview on the correlation between the immunohistochemical (IHC) expression of specific antigenic markers at different PMIs. The systematic review was performed according to PRISMA guidelines. Scopus and PubMed were used as search engines from January 1, 1998 to March 1, 2022 to evaluate the effectiveness of immunohistochemistry in estimating PMI. The following keywords were used: (immunohistochemical) OR (immunohistochemistry) AND (time since death) OR (post-mortem interval) OR (PMI). A total of 6571 articles were collected. Ultimately, 16 studies were included in this review. The results of this systematic review highlighted that IHC techniques, in association with traditional methods, add, in Bayesian terms, additional information to define a more accurate time of death and PMI. However, current IHC results are numerically limited and more data and studies are desirable in the near future.
Collapse
Affiliation(s)
- Monica Salerno
- “G.F. Ingrassia” Department of Medical, Surgical and Advanced Technologies, University of Catania, 95121 Catania, Italy
- Correspondence: (M.S.); (F.S.); Tel.: +39-3735357201 (M.S.); +39-095-3782079 (F.S.)
| | - Giuseppe Cocimano
- “G.F. Ingrassia” Department of Medical, Surgical and Advanced Technologies, University of Catania, 95121 Catania, Italy
| | - Salvatore Roccuzzo
- “G.F. Ingrassia” Department of Medical, Surgical and Advanced Technologies, University of Catania, 95121 Catania, Italy
| | - Ilenia Russo
- “G.F. Ingrassia” Department of Medical, Surgical and Advanced Technologies, University of Catania, 95121 Catania, Italy
| | | | | | - Christian Zammit
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, 2080 Msida, Malta
| | - Massimiliano Esposito
- “G.F. Ingrassia” Department of Medical, Surgical and Advanced Technologies, University of Catania, 95121 Catania, Italy
| | - Francesco Sessa
- “G.F. Ingrassia” Department of Medical, Surgical and Advanced Technologies, University of Catania, 95121 Catania, Italy
- Correspondence: (M.S.); (F.S.); Tel.: +39-3735357201 (M.S.); +39-095-3782079 (F.S.)
| |
Collapse
|
6
|
Zadka Ł, Buzalewicz I, Ulatowska-Jarża A, Rusak A, Kochel M, Ceremuga I, Dzięgiel P. Label-Free Quantitative Phase Imaging Reveals Spatial Heterogeneity of Extracellular Vesicles in Select Colon Disorders. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2147-2171. [PMID: 34428422 DOI: 10.1016/j.ajpath.2021.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Three-dimensional (3D) imaging and quantitative analysis of extracellular vesicles (EVs) remain largely unexplored, mainly because of limitations in detection techniques. In this study, EVs from patients diagnosed with colorectal cancer (CRC) and ulcerative colitis were examined. To investigate the spatial heterogeneity and 3D refractive index (RI) distribution of single EVs, a label-free digital holographic tomography technique was used at a submicrometer spatial resolution. The presented image-processing algorithms were used in quantitative analysis with digital staining and 3D visualization, the determination of the EV size distribution and extraction of fractions with different RIs. Reconstructed 3D RI distributions revealed variations in the spatial heterogeneity of EVs related to tissue specificity, such as CRC, normal colonic mucosa, and ulcerative colitis, as well as the isolation procedures used. The RI values of EVs isolated from solid tissues of frozen CRC samples were also dependent on the tumor grade and cancer cell proliferation. The simultaneous examination of cell culture models confirmed the association of the RI of EVs with the tumor grade. 3D-RI data analysis generates new perspectives with the optical, contact-free, label-free examination of the individual EVs. Depending on the specific tissue and isolation method, EVs exhibit significant spatial heterogeneity. The optical parameters of single EVs enabled their classification into two unique subgroups with different RI values.
Collapse
Affiliation(s)
- Łukasz Zadka
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland.
| | - Igor Buzalewicz
- Bio-Optics Group, Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Agnieszka Ulatowska-Jarża
- Bio-Optics Group, Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Agnieszka Rusak
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | - Maria Kochel
- The Institute of Geological Sciences, University of Wrocław, Wroclaw, Poland
| | - Ireneusz Ceremuga
- Department of Medical Biochemistry, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Dzięgiel
- Department of Histology and Embryology, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|