1
|
Li W, Zhan H, Huang N, Ying Y, Yu J, Zheng J, Qiao L, Li J, Che S. Scalable and Flexible Multi-Layer Prismatic Photonic Metamaterial Film for Efficient Daytime Radiative Cooling. SMALL METHODS 2024; 8:e2301258. [PMID: 38148329 DOI: 10.1002/smtd.202301258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/27/2023] [Indexed: 12/28/2023]
Abstract
To maintain a comfortable indoor living environment in low latitude or tropical regions, humans consume significant amounts of electrical energy in air conditioning, leading to substantial CO2 emissions. Passive daytime radiative cooling (PDRC) allows objects to cool down during the daytime without any energy consumption by dissipating heat through the atmospheric transparency window (8-13 µm) to outer space, which has garnered significant attention. However, the practical applications of common PDRC materials are hindered by their poor optical selectivity and high-reflective silver backing. Additionally, the availability of artificial photon emitters with complex structures and excellent performance is also limited by their high cost. Herein, a novel multilayer prismatic photonic metamaterial film without any silver reflector, easily scalable and produced by a roll-to-roll method is demonstrated, which exhibits ≈96.4% sunlight reflectance (0.3-2.5 µm) and ≈97.2% emissivity in mid-infrared (IR) (8-13 µm). At an average solar intensity of ≈920 W m-2, it is on average 6.8 °C below ambient temperature during the day and theoretically yields a radiative cooling power of 88.9 W m-2. Furthermore, the film exhibits excellent hydrophobicity, superior flexibility, and robust mechanical strength, providing an attractive and viable pathway for practical applications addressing the pressing challenges of climate and energy issues.
Collapse
Affiliation(s)
- Wangchang Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Huanchen Zhan
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Nengyan Huang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yao Ying
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingwu Zheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liang Qiao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Juan Li
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shenglei Che
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
- Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
2
|
Díaz-Lobo A, Martin-Gonzalez M, Morales-Sabio Á, Manzano CV. Suitability of Anodic Porous Alumina as a Passive Radiative Cooler: An In-Depth Study. ACS APPLIED OPTICAL MATERIALS 2024; 2:980-990. [PMID: 38962566 PMCID: PMC11220729 DOI: 10.1021/acsaom.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 07/05/2024]
Abstract
Passive radiative cooling technology has the potential to revolutionize the way of cooling buildings and devices, while also helping to reduce the carbon footprint and energy consumption. Pioneer works involving anodic aluminum oxide (AAO) nanostructures showed controversial results. In this work, we clarify how the morphological properties and chemical structure of AAO-Al samples affect their optical properties and their cooling performance. Changes in thickness, interpore distance, and porosity of the alumina layer, as well as the used counterions, significantly affect the cooling ability of the AAO-Al structure. We measure a maximum temperature reduction, ΔT, of 8.0 °C under direct sunlight on a summer day in Spain, coinciding with a calculated peak cooling power, P cool, of 175 W/m2, using an AAO-Al sample anodized in sulfuric acid, with 12 μm of AAO thickness and 10% of porosity. These results represent a significant improvement over previous studies, demonstrating the potential of AAO nanostructures to be used in thermal management applications.
Collapse
Affiliation(s)
- Alba Díaz-Lobo
- Instituto
de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM + CSIC), Isaac Newton, 8, E-28706 Tres Cantos, Madrid, Spain
| | - Marisol Martin-Gonzalez
- Instituto
de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM + CSIC), Isaac Newton, 8, E-28706 Tres Cantos, Madrid, Spain
| | - Ángel Morales-Sabio
- Centro
de Investigaciones Energéticas, Medioambientales y Tecnológicas
(CIEMAT), Avda. Complutense,
22, E-28040 Madrid, Spain
| | - Cristina V. Manzano
- Instituto
de Micro y Nanotecnología, IMN-CNM, CSIC (CEI UAM + CSIC), Isaac Newton, 8, E-28706 Tres Cantos, Madrid, Spain
| |
Collapse
|
3
|
Tu Y, Tan X, Yang X, Qi G, Yan K, Kang Z. Antireflection and radiative cooling difunctional coating design for silicon solar cells. OPTICS EXPRESS 2023; 31:22296-22307. [PMID: 37475344 DOI: 10.1364/oe.488376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/06/2023] [Indexed: 07/22/2023]
Abstract
Passive daytime radiative cooling (PDRC) as a zero-energy consumption cooling method has broad application potential. Common commercial crystalline silicon (c-Si) solar cell arrays suffer working efficiency loss due to the incident light loss and overheating. In this work, a radiative cooler with PDMS (polydimethylsiloxane) film and embedded SiO2 microparticles was proposed to use in silicon solar cells. Both anti-reflection and radiative cooling performance can be improved through numerical parametric study. For the best performing of PDMS/SiO2 radiative cooler, the thickness of PDMS layer, volume fraction and radius of the embedded SiO2 particles have been determined as 55 µm, 8% and 500 nm, respectively. 94% of emissivity in first atmospheric window band (8-13 µm) for radiative cooling and 93.4% of solar transmittance at the crystalline silicon absorption band (0.3-1.1 µm) were achieved. We estimated that the PDMS/SiO2 radiative cooler can lower the temperature of a bare c-Si solar cell by 9.5°C, which can avoid 4.28% of efficiency loss. More incident light can enter and be utilized by silicon layer to enhance the efficiency of the solar cells. The proposed difunctional radiative cooling coating may become guidance for next generation encapsulation of crystalline silicon solar cells.
Collapse
|
4
|
Osuna Ruiz D, Lezaun C, Torres-García AE, Beruete M. Metal-free design of a multilayered metamaterial with chirped Bragg grating for enhanced radiative cooling. OPTICS EXPRESS 2023; 31:22698-22709. [PMID: 37475374 DOI: 10.1364/oe.492404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/22/2023] [Indexed: 07/22/2023]
Abstract
A wideband, all-dielectric metamaterial structure for enhancing radiative cooling is investigated. The structure is optimized to reflect most of the solar irradiance window (between 0.3 µm-3 µm), which is one of the biggest challenges in highly efficient radiative cooling coatings. The design is based on the principles of Bragg gratings, which constitutes a simple synthesis procedure to make a broadband reflector of reduced dimensions, without metallic layers, while keeping a flat enough response in the entire bandwidth. Numerical results show that reflection of solar irradiation can be easily tailored and maximized using this method, as well as the net cooling power of the device, about ∼79 W/m2 at daytime (about double at night-time) and a temperature reduction of 23 K (assuming no heat exchange) and 7 K assuming a heat exchange coefficient of 10 W/m2/K, for a device and ambient temperatures of 300 K and 303 K, respectively. This occurs even in detriment of absorption in the atmospheric window (8 µm-13 µm). Results also show the importance of efficiently reflecting solar irradiance for such technologies and its relevance in synthesis and design without using metallic components.
Collapse
|
5
|
Wang Y, Ge-Zhang S, Mu P, Wang X, Li S, Qiao L, Mu H. Advances in Sol-Gel-Based Superhydrophobic Coatings for Wood: A Review. Int J Mol Sci 2023; 24:ijms24119675. [PMID: 37298624 DOI: 10.3390/ijms24119675] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
As the focus of architecture, furniture, and other fields, wood has attracted extensive attention for its many advantages, such as environmental friendliness and excellent mechanical properties. Inspired by the wetting model of natural lotus leaves, researchers prepared superhydrophobic coatings with strong mechanical properties and good durability on the modified wood surface. The prepared superhydrophobic coating has achieved functions such as oil-water separation and self-cleaning. At present, some methods such as the sol-gel method, the etching method, graft copolymerization, and the layer-by-layer self-assembly method can be used to prepare superhydrophobic surfaces, which are widely used in biology, the textile industry, national defense, the military industry, and many other fields. However, most methods for preparing superhydrophobic coatings on wood surfaces are limited by reaction conditions and process control, with low coating preparation efficiency and insufficiently fine nanostructures. The sol-gel process is suitable for large-scale industrial production due to its simple preparation method, easy process control, and low cost. In this paper, the research progress on wood superhydrophobic coatings is summarized. Taking the sol-gel method with silicide as an example, the preparation methods of superhydrophobic coatings on wood surfaces under different acid-base catalysis processes are discussed in detail. The latest progress in the preparation of superhydrophobic coatings by the sol-gel method at home and abroad is reviewed, and the future development of superhydrophobic surfaces is prospected.
Collapse
Affiliation(s)
- Yudong Wang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Shangjie Ge-Zhang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Pingxuan Mu
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Xueqing Wang
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Shaoyi Li
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Lingling Qiao
- College of Science, Northeast Forestry University, Harbin 150040, China
| | - Hongbo Mu
- College of Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
6
|
Lee M, Kim G, Jung Y, Pyun KR, Lee J, Kim BW, Ko SH. Photonic structures in radiative cooling. LIGHT, SCIENCE & APPLICATIONS 2023; 12:134. [PMID: 37264035 PMCID: PMC10235094 DOI: 10.1038/s41377-023-01119-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 02/03/2023] [Accepted: 02/27/2023] [Indexed: 06/03/2023]
Abstract
Radiative cooling is a passive cooling technology without any energy consumption, compared to conventional cooling technologies that require power sources and dump waste heat into the surroundings. For decades, many radiative cooling studies have been introduced but its applications are mostly restricted to nighttime use only. Recently, the emergence of photonic technologies to achieves daytime radiative cooling overcome the performance limitations. For example, broadband and selective emissions in mid-IR and high reflectance in the solar spectral range have already been demonstrated. This review article discusses the fundamentals of thermodynamic heat transfer that motivates radiative cooling. Several photonic structures such as multilayer, periodical, random; derived from nature, and associated design procedures were thoroughly discussed. Photonic integration with new functionality significantly enhances the efficiency of radiative cooling technologies such as colored, transparent, and switchable radiative cooling applications has been developed. The commercial applications such as reducing cooling loads in vehicles, increasing the power generation of solar cells, generating electricity, saving water, and personal thermal regulation are also summarized. Lastly, perspectives on radiative cooling and emerging issues with potential solution strategies are discussed.
Collapse
Affiliation(s)
- Minjae Lee
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
- Electronic Device Research Team, Hyundai Motor Group, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do, 16082, South Korea
| | - Gwansik Kim
- E-drive Materials Research Team, Hyundai Motor Group, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do, 16082, South Korea
| | - Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Kyung Rok Pyun
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jinwoo Lee
- Department of Mechanical Robotics, and Energy Engineering, Dongguk University, 30 pildong-ro 1-gil, Jung-gu, Seoul, 04620, South Korea
| | - Byung-Wook Kim
- E-drive Materials Research Team, Hyundai Motor Group, 37, Cheoldobangmulgwan-ro, Uiwang-si, Gyeonggi-do, 16082, South Korea.
- Department of Civil Engineering and Engineering Mechanics, Columbia University, New York, NY, 10027, USA.
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
- Institute of Advanced Machinery and Design (SNU-IAMD)/Institute of Engineering Research, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea.
| |
Collapse
|
7
|
Akerboom E, Veeken T, Hecker C, van de Groep J, Polman A. Passive Radiative Cooling of Silicon Solar Modules with Photonic Silica Microcylinders. ACS PHOTONICS 2022; 9:3831-3840. [PMID: 36573162 PMCID: PMC9782778 DOI: 10.1021/acsphotonics.2c01389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Indexed: 06/17/2023]
Abstract
Passive radiative cooling is a method to dissipate excess heat from a material by the spontaneous emission of infrared thermal radiation. For a solar cell, the challenge is to enhance PRC while retaining transparency for sunlight above the bandgap. Here, we design a hexagonal array of cylinders etched into the top surface of silica solar module glass to enhance passive radiative cooling. Multipolar Mie-like resonances in the cylinders are shown to cause antireflection effects in the infrared, which results in enhanced infrared emissivity. Using Fourier transform infrared spectrometry we measure the hemispherical reflectance of the fabricated structures and find the emissivity of the silica cylinder array in good correspondence with the simulated results. The microcylinder array increases the average emissivity between λ = 7.5-16 μm from 84.3% to 97.7%, without reducing visible light transmission.
Collapse
Affiliation(s)
- Evelijn Akerboom
- Center
for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands
| | - Tom Veeken
- Center
for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands
| | - Christoph Hecker
- Department
of Applied Earth Sciences, Faculty of Geo-Information Science and
Earth Observation (ITC), University of Twente, Hengelosestraat 99, 7500 AAEnschede, The Netherlands
| | - Jorik van de Groep
- Van
der Waals-Zeeman Institute, Institute of Physics, University of Amsterdam, Science Park 904, 1098 XHAmsterdam, The Netherlands
| | - Albert Polman
- Center
for Nanophotonics, NWO-Institute AMOLF, Science Park 104, 1098 XGAmsterdam, The Netherlands
| |
Collapse
|
8
|
Highly ordered laser imprinted plasmonic metasurfaces for polarization sensitive perfect absorption. Sci Rep 2022; 12:19769. [DOI: 10.1038/s41598-022-21647-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/18/2022] Open
Abstract
AbstractWe present polarization-sensitive gap surface plasmon metasurfaces fabricated with direct material processing using pulsed laser light, an alternative and versatile approach. In particular we imprint laser induced periodic surface structures on nanometer-thick Ni films, which are back-plated by a grounded dielectric layer with TiO2 and ZnO deposition followed by Au evaporation. The procedure results in a metal-insulator-metal type plasmonic metasurface with a corrugated top layer consisting of highly-ordered, sinusoidal shaped, periodic, thin, metallic nanowires. The metasurface sustains sharp, resonant gap surface plasmons and provides various opportunities for polarization control in reflection, which is here switched by the size and infiltrating material of the insulating cavity. The polarization control is associated with the polarization sensitive perfect absorption and leads to high extinction ratios in the near-IR and mid-IR spectral areas. Corresponding Fourier-transform infrared spectroscopy measurements experimentally demonstrate that the fabrication approach produces metasurfaces with very well-defined, controllable, sharp resonances and polarization sensitive resonant absorption response which, depending on the insulating cavity size, impacts either the normal or the parallel to the nanowires polarization.
Collapse
|
9
|
Cagnoni M, Tibaldi A, Dolado JS, Cappelluti F. Cementitious materials as promising radiative coolers for solar cells. iScience 2022; 25:105320. [PMID: 36310584 PMCID: PMC9615327 DOI: 10.1016/j.isci.2022.105320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/27/2022] [Accepted: 10/07/2022] [Indexed: 11/19/2022] Open
Abstract
Nowadays, radiative coolers are extensively investigated for the thermal management of solar cells with the aim of improving their performance and lifetime. Current solutions rely on meta-materials with scarce elements or complex fabrication processes, or organic polymers possibly affected by UV degradation. Here, the potential of innovative cement-based solutions as a more sustainable and cost-effective alternative is reported. By combining chemical kinetics, molecular mechanics and electromagnetic simulations, it is shown that the most common cements, i.e., Portland cements, can be equipped with excellent radiative cooling properties, which might enable a reduction of the operating temperature of solar cells by up to 20 K, with outstanding efficiency and lifetime gains. This study represents a first step toward the realization of a novel class of energy-efficient, economically viable and robust radiative coolers, based on cheap and available cementitious materials. A multi-scale approach predicts dielectric properties of cementitious materials Cementitious slabs can emit thermal radiation in the atmospheric window Low-cost cementitious materials can be effective radiative coolers for solar cells Cement-based radiative cooling could significantly extend solar cells lifetime
Collapse
|
10
|
Silva-Oelker G, Jaramillo-Fernandez J. Numerical study of sodalime and PDMS hemisphere photonic structures for radiative cooling of silicon solar cells. OPTICS EXPRESS 2022; 30:32965-32977. [PMID: 36242347 DOI: 10.1364/oe.466335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/15/2022] [Indexed: 06/16/2023]
Abstract
This paper numerically explores the capability of an all-photonic approach to enhance radiative cooling, UV and sub-bandgap reflection, and light trapping as a path to improve solar cells efficiency. The structure is based on hemispheres and a flat surface placed on a silicon photovoltaic cell. The study considers two materials commonly used in panel covers: soda-lime glass and polydimethylsiloxane (PDMS). A numerical approach based on the rigorous coupled-wave analysis method and an electrical-thermal model predicts maximum power improvements of 18.1% and 19.7% when using soda-lime and PDMS hemispheres, respectively, as well as a cell's temperature reduction of 4 °C, compared to a glass encapsulated solar cell.
Collapse
|