Jang YJ, Sharma A, Jung JP. Advanced 3D Through-Si-Via and Solder Bumping Technology: A Review.
MATERIALS (BASEL, SWITZERLAND) 2023;
16:7652. [PMID:
38138794 PMCID:
PMC10744783 DOI:
10.3390/ma16247652]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023]
Abstract
Three-dimensional (3D) packaging using through-Si-via (TSV) is a key technique for achieving high-density integration, high-speed connectivity, and for downsizing of electronic devices. This paper describes recent developments in TSV fabrication and bonding methods in advanced 3D electronic packaging. In particular, the authors have overviewed the recent progress in the fabrication of TSV, various etching and functional layers, and conductive filling of TSVs, as well as bonding materials such as low-temperature nano-modified solders, transient liquid phase (TLP) bonding, Cu pillars, composite hybrids, and bump-free bonding, as well as the role of emerging high entropy alloy (HEA) solders in 3D microelectronic packaging. This paper serves as a guideline enumerating the current developments in 3D packaging that allow Si semiconductors to deliver improved performance and power efficiency.
Collapse