1
|
Kazempour H, Teymouri F, Khatami M, Hosseini SN. Computational modelling of the therapeutic outputs of photodynamic therapy on spheroid-on-chip models. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112960. [PMID: 38991293 DOI: 10.1016/j.jphotobiol.2024.112960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
Photodynamic therapy (PDT) is a medical radio chemotherapeutic method that uses light, photosensitizing agents, and oxygen to produce cytotoxic compounds, which eliminate malignant cells. Recently, Microfluidic systems have been used to analyse photosensitizers (PSs) due to their potential to replicate in vivo environments. While prior studies have established a strong correlation between reacted singlet oxygen concentration and PDT-induced cellular death, the effects that the ambient fluid flow might have on the concentration of oxygen and PS have been disregarded in many, which limits the reliability of the results. Herein, we coupled the transport of oxygen and PS throughout the ambient medium and within the spheroidal multicellular aggregate to initially study the profiles of oxygen and PS concentration alongside PDT-induced cellular death throughout the spheroid before and after radiation. The attained results indicate that the PDT-induced cellular death initiates on the surface of the spheroids and subsequently spreads to the neighbouring regions, which is in great accordance with experimental results. Afterward, the effects that drug-light interval (DLI), fluence rate, PS composition, microchannel height, and inlet flow rate have on the therapeutic outcomes are studied. The findings show that adequate DLI is critical to ensure uniform distribution of PS throughout the medium, and a value of 5 h was found to be sufficient. The composition of PS is critical, as ALA-PpIX induces earlier cell death but accelerates oxygen consumption, especially in the outer layers, depriving the inner layers of oxygen necessary for PDT, which in turn disrupts and prolongs the exposure time compared to mTHPC and Photofrin. Despite the fluence rate directly influencing the singlet oxygen generation rate, increasing the fluence rate by 189 mW/cm2 would not significantly benefit us. Microwell height and inlet flow rate involve competing phenomena-increasing height or decreasing flow reduces oxygen supply and increases PS "washout" and its concentration.
Collapse
Affiliation(s)
- Hossein Kazempour
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Teymouri
- Chemical and Petroleum Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Maryam Khatami
- Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
2
|
Hasannejad F, Montazeri L, Mano JF, Bonakdar S, Fazilat A. Regulation of cell fate by cell imprinting approach in vitro. BIOIMPACTS : BI 2023; 14:29945. [PMID: 38938752 PMCID: PMC11199935 DOI: 10.34172/bi.2023.29945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 06/29/2024]
Abstract
Cell culture-based technologies are widely utilized in various domains such as drug evaluation, toxicity assessment, vaccine and biopharmaceutical development, reproductive technology, and regenerative medicine. It has been demonstrated that pre-adsorption of extracellular matrix (ECM) proteins including collagen, laminin and fibronectin provide more degrees of support for cell adhesion. The purpose of cell imprinting is to imitate the natural topography of cell membranes by gels or polymers to create a reliable environment for the regulation of cell function. The results of recent studies show that cell imprinting is a tool to guide the behavior of cultured cells by controlling their adhesive interactions with surfaces. Therefore, in this review we aim to compare different cell cultures with the imprinting method and discuss different cell imprinting applications in regenerative medicine, personalized medicine, disease modeling, and cell therapy.
Collapse
Affiliation(s)
- Farkhonde Hasannejad
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Science, Semnan, Iran
- Genetic Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Leila Montazeri
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Portugal
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Ahmad Fazilat
- Genetic Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
3
|
Dufva M. A quantitative meta-analysis comparing cell models in perfused organ on a chip with static cell cultures. Sci Rep 2023; 13:8233. [PMID: 37217582 DOI: 10.1038/s41598-023-35043-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
As many consider organ on a chip for better in vitro models, it is timely to extract quantitative data from the literature to compare responses of cells under flow in chips to corresponding static incubations. Of 2828 screened articles, 464 articles described flow for cell culture and 146 contained correct controls and quantified data. Analysis of 1718 ratios between biomarkers measured in cells under flow and static cultures showed that the in all cell types, many biomarkers were unregulated by flow and only some specific biomarkers responded strongly to flow. Biomarkers in cells from the blood vessels walls, the intestine, tumours, pancreatic island, and the liver reacted most strongly to flow. Only 26 biomarkers were analysed in at least two different articles for a given cell type. Of these, the CYP3A4 activity in CaCo2 cells and PXR mRNA levels in hepatocytes were induced more than two-fold by flow. Furthermore, the reproducibility between articles was low as 52 of 95 articles did not show the same response to flow for a given biomarker. Flow showed overall very little improvements in 2D cultures but a slight improvement in 3D cultures suggesting that high density cell culture may benefit from flow. In conclusion, the gains of perfusion are relatively modest, larger gains are linked to specific biomarkers in certain cell types.
Collapse
Affiliation(s)
- Martin Dufva
- Department of Health Technology, Technical University of Denmark, 2800, Kgs Lyngby, Denmark.
| |
Collapse
|
4
|
Tiskratok W, Yamada M, Watanabe J, Pengyu Q, Kimura T, Egusa H. Mechanoregulation of Osteoclastogenesis-Inducing Potentials of Fibrosarcoma Cell Line by Substrate Stiffness. Int J Mol Sci 2023; 24:ijms24108959. [PMID: 37240303 DOI: 10.3390/ijms24108959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
A micro-physiological system is generally fabricated using soft materials, such as polydimethylsiloxane silicone (PDMS), and seeks an inflammatory osteolysis model for osteoimmunological research as one of the development needs. Microenvironmental stiffness regulates various cellular functions via mechanotransduction. Controlling culture substrate stiffness may help spatially coordinate the supply of osteoclastogenesis-inducing factors from immortalized cell lines, such as mouse fibrosarcoma L929 cells, within the system. Herein, we aimed to determine the effects of substrate stiffness on the osteoclastogenesis-inducing potential of L929 cells via cellular mechanotransduction. L929 cells showed increased expression of osteoclastogenesis-inducing factors when cultured on type I collagen-coated PDMS substrates with soft stiffness, approximating that of soft tissue sarcomas, regardless of the addition of lipopolysaccharide to augment proinflammatory reactions. Supernatants of L929 cells cultured on soft PDMS substrates promoted osteoclast differentiation of the mouse osteoclast precursor RAW 264.7 by stimulating the expression of osteoclastogenesis-related gene markers and tartrate-resistant acid phosphatase activity. The soft PDMS substrate inhibited the nuclear translocation of YES-associated proteins in L929 cells without reducing cell attachment. However, the hard PDMS substrate hardly affected the cellular response of the L929 cells. Our results showed that PDMS substrate stiffness tuned the osteoclastogenesis-inducing potential of L929 cells via cellular mechanotransduction.
Collapse
Affiliation(s)
- Watcharaphol Tiskratok
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
- School of Geriatric Oral Health, Institute of Dentistry, Suranaree University of Technology, 111 University Rd. Suranaree, Nakhon Ratchasima 30000, Mueang, Thailand
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| | - Jun Watanabe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| | - Qu Pengyu
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| | - Tsuyoshi Kimura
- Department of Material-Based Medical Engineering, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, Tokyo 101-0062, Chiyoda-ku, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Sendai 980-8575, Miyagi, Japan
| |
Collapse
|
5
|
Babaei M, Bonakdar S, Nasernejad B. Selective biofunctionalization of 3D cell-imprinted PDMS with collagen immobilization for targeted cell attachment. Sci Rep 2022; 12:12837. [PMID: 35896682 PMCID: PMC9329428 DOI: 10.1038/s41598-022-17252-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Cell-imprinted polydimethylsiloxane substrates, in terms of their ability to mimic the physiological niche, low microfabrication cost, and excellent biocompatibility were widely used in tissue engineering. Cells inside the mature cells' cell-imprinted PDMS pattern have been shown in previous research to be capable of being differentiated into a specific mature cell line. On the other hand, the hydrophobicity of PDMS substrate leads to weak cell adhesion. Moreover, there was no guarantee that the cells would be exactly located in the cavities of the cells' pattern. In many studies, PDMS surface was modified by plasma treatment, chemical modification, and ECM coating. Hence, to increase the efficiency of cell-imprinting method, the concavity region created by the cell-imprinted pattern is conjugated with collagen. A simple and economical method of epoxy silane resin was applied for the selective protein immobilization on the desired regions of the PDMS substrate. This method could be paved to enhance the cell trapping into the cell-imprinted pattern, and it could be helpful for stem cell differentiation studies. The applied method for selective protein attachment, and as a consequence, selective cell integration was assessed on the aligned cell-imprinted PDMS. A microfluidic chip created the aligned cell pattern. After Ar+ plasma and APTES treatment of the PDMS substrate, collagen immobilization was performed. The immobilized collagen was removed by epoxy silane resin stamp from the ridge area where the substrate lacked cell pattern and leaving the collagen only within the patterned areas. Coomassie brilliant blue staining was evaluated for selective collagen immobilization, and the collagen-binding stability was assessed by BCA analysis. MTT assay for the evaluation of cell viability on the modified surface was further analyzed. Subsequently, the crystal violet staining has confirmed the selective cell integration to the collagen-immobilized site on the PDMS substrate. The results proved the successfully selective collagen immobilization on the cell-imprinted PDMS and showed that this method increased the affinity of cells to attach inside the cell pattern cavity.
Collapse
Affiliation(s)
- Mahrokh Babaei
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Bahram Nasernejad
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| |
Collapse
|
6
|
Shou Y, Johnson SC, Quek YJ, Li X, Tay A. Integrative lymph node-mimicking models created with biomaterials and computational tools to study the immune system. Mater Today Bio 2022; 14:100269. [PMID: 35514433 PMCID: PMC9062348 DOI: 10.1016/j.mtbio.2022.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 11/17/2022] Open
Abstract
The lymph node (LN) is a vital organ of the lymphatic and immune system that enables timely detection, response, and clearance of harmful substances from the body. Each LN comprises of distinct substructures, which host a plethora of immune cell types working in tandem to coordinate complex innate and adaptive immune responses. An improved understanding of LN biology could facilitate treatment in LN-associated pathologies and immunotherapeutic interventions, yet at present, animal models, which often have poor physiological relevance, are the most popular experimental platforms. Emerging biomaterial engineering offers powerful alternatives, with the potential to circumvent limitations of animal models, for in-depth characterization and engineering of the lymphatic and adaptive immune system. In addition, mathematical and computational approaches, particularly in the current age of big data research, are reliable tools to verify and complement biomaterial works. In this review, we first discuss the importance of lymph node in immunity protection followed by recent advances using biomaterials to create in vitro/vivo LN-mimicking models to recreate the lymphoid tissue microstructure and microenvironment, as well as to describe the related immuno-functionality for biological investigation. We also explore the great potential of mathematical and computational models to serve as in silico supports. Furthermore, we suggest how both in vitro/vivo and in silico approaches can be integrated to strengthen basic patho-biological research, translational drug screening and clinical personalized therapies. We hope that this review will promote synergistic collaborations to accelerate progress of LN-mimicking systems to enhance understanding of immuno-complexity.
Collapse
Key Words
- ABM, agent-based model
- APC, antigen-presenting cell
- BV, blood vessel
- Biomaterials
- CPM, Cellular Potts model
- Computational models
- DC, dendritic cell
- ECM, extracellular matrix
- FDC, follicular dendritic cell
- FRC, fibroblastic reticular cell
- Immunotherapy
- LEC, lymphatic endothelial cell
- LN, lymph node
- LV, lymphatic vessel
- Lymph node
- Lymphatic system
- ODE, ordinary differential equation
- PDE, partial differential equation
- PDMS, polydimethylsiloxane
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Sarah C. Johnson
- Department of Bioengineering, Stanford University, CA, 94305, USA
- Department of Bioengineering, Imperial College London, South Kensington, SW72AZ, UK
| | - Ying Jie Quek
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research, 138648, Singapore
| | - Xianlei Li
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
| | - Andy Tay
- Department of Biomedical Engineering, National University of Singapore, 117583, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, 117599, Singapore
- NUS Tissue Engineering Program, National University of Singapore, 117510, Singapore
| |
Collapse
|
7
|
Nazbar A, Samani S, Yazdian Kashani S, Amanzadeh A, Shoeibi S, Bonakdar S. Molecular imprinting as a simple way for the long-term maintenance of the stemness and proliferation potential of adipose-derived stem cells: an in vitro study. J Mater Chem B 2022; 10:6816-6830. [DOI: 10.1039/d2tb00279e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Culturing adipose-derived stem cells (ADSCs) on the biomimetic ADSC-imprinted substrate is a simple way for long-term maintenance of their stemness and proliferation potential.
Collapse
Affiliation(s)
- Abolfazl Nazbar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Saeed Samani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sepideh Yazdian Kashani
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Amir Amanzadeh
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| | - Shahram Shoeibi
- Food and Drug Laboratory Research Center (FDLRC), Iran Food and Drug Administration (IFDA), MOH & ME, Tehran, Iran
| | - Shahin Bonakdar
- National Cell Bank Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|