1
|
Palumbo S, Palumbo D, Cirillo G, Giurato G, Aiello F, Miraglia Del Giudice E, Grandone A. Methylome analysis in girls with idiopathic central precocious puberty. Clin Epigenetics 2024; 16:82. [PMID: 38909248 PMCID: PMC11193236 DOI: 10.1186/s13148-024-01683-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/22/2024] [Indexed: 06/24/2024] Open
Abstract
BACKGROUND Genetic and environmental factors are implicated in many developmental processes. Recent evidence, however, has suggested that epigenetic changes may also influence the onset of puberty or the susceptibility to a wide range of diseases later in life. The present study aims to investigate changes in genomic DNA methylation profiles associated with pubertal onset analyzing human peripheral blood leukocytes from three different groups of subjects: 19 girls with central precocious puberty (CPP), 14 healthy prepubertal girls matched by age and 13 healthy pubertal girls matched by pubertal stage. For this purpose, the comparisons were performed between pre- and pubertal controls to identify changes in normal pubertal transition and CPP versus pre- and pubertal controls. RESULTS Analysis of methylation changes associated with normal pubertal transition identified 1006 differentially methylated CpG sites, 86% of them were found to be hypermethylated in prepubertal controls. Some of these CpG sites reside in genes associated with the age of menarche or transcription factors involved in the process of pubertal development. Analysis of methylome profiles in CPP patients showed 65% and 55% hypomethylated CpG sites compared with prepubertal and pubertal controls, respectively. In addition, interestingly, our results revealed the presence of 43 differentially methylated genes coding for zinc finger (ZNF) proteins. Gene ontology and IPA analysis performed in the three groups studied revealed significant enrichment of them in some pathways related to neuronal communication (semaphorin and gustation pathways), estrogens action, some cancers (particularly breast and ovarian) or metabolism (particularly sirtuin). CONCLUSIONS The different methylation profiles of girls with normal and precocious puberty indicate that regulation of the pubertal process in humans is associated with specific epigenetic changes. Differentially methylated genes include ZNF genes that may play a role in developmental control. In addition, our data highlight changes in the methylation status of genes involved in signaling pathways that determine the migration and function of GnRH neurons and the onset of metabolic and neoplastic diseases that may be associated with CPP in later life.
Collapse
Affiliation(s)
- Stefania Palumbo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy.
| | - Domenico Palumbo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Grazia Cirillo
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Giorgio Giurato
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry SMS, University of Salerno, Salerno, Italy
| | - Francesca Aiello
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| | - Anna Grandone
- Department of Women's and Children's Health and General and Specialized Surgery, University of Campania "Luigi Vanvitelli", Via Luigi De Crecchio 2, 80138, Naples, Italy
| |
Collapse
|
2
|
Webster AP, Thirlwell C. The Molecular Biology of Midgut Neuroendocrine Neoplasms. Endocr Rev 2024; 45:343-350. [PMID: 38123518 PMCID: PMC11074790 DOI: 10.1210/endrev/bnad034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/12/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Midgut neuroendocrine neoplasms (NENs) are one of the most common subtypes of NEN, and their incidence is rising globally. Despite being the most frequently diagnosed malignancy of the small intestine, little is known about their underlying molecular biology. Their unusually low mutational burden compared to other solid tumors and the unexplained occurrence of multifocal tumors makes the molecular biology of midgut NENs a particularly fascinating field of research. This review provides an overview of recent advances in the understanding of the interplay of the genetic, epigenetic, and transcriptomic landscape in the development of midgut NENs, a topic that is critical to understanding their biology and improving treatment options and outcomes for patients.
Collapse
Affiliation(s)
- Amy P Webster
- Department of Clinical and Biomedical Science, University of Exeter College of Medicine and Health, Exeter, EX2 5DW, UK
| | - Chrissie Thirlwell
- Department of Clinical and Biomedical Science, University of Exeter College of Medicine and Health, Exeter, EX2 5DW, UK
- University of Bristol Medical School, University of Bristol, Bristol, BS8 1UD, UK
| |
Collapse
|
3
|
Dong Y, Jin F, Wang J, Li Q, Huang Z, Xia L, Yang M. SFXN3 is Associated with Poor Clinical Outcomes and Sensitivity to the Hypomethylating Therapy in Non-M3 Acute Myeloid Leukemia Patients. Curr Gene Ther 2023; 23:410-418. [PMID: 37491851 PMCID: PMC10614111 DOI: 10.2174/1566523223666230724121515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/19/2023] [Accepted: 05/24/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND DNA hypermethylation plays a critical role in the occurrence and progression of acute myeloid leukemia (AML). The mitochondrial serine transporter, SFXN3, is vital for onecarbon metabolism and DNA methylation. However, the impact of SFXN3 on the occurrence and progression of AML has not been reported yet. OBJECTIVE In this study, we hypothesized that SFXN3 indicates a poor prognosis and suggested tailored treatment for AML patients. METHODS We used GEPIA and TCGA repository data to analyze the expression of SFXN3 and its correlation with survival in AML patients. RT-qPCR was used to detect the SFXN3 level in our enrolled AML patients and volunteers. Additionally, Whole Genome Bisulfite Sequencing (WGBS) was used to detect the genomic methylation level in individuals. RESULTS Through the TCGA and GEPIA databases, we found that SFXN3 was enriched in AML patients, predicting shorter survival. Furthermore, we confirmed that SFXN3 was primarily overexpressed in AML patients, especially non-M3 patients, and that high SFXN3 in non-M3 AML patients was found to be associated with poor outcomes and frequent blast cells. Interestingly, non-M3 AML patients with high SFXN3 levels who received hypomethylating therapy showed a higher CR ratio. Finally, we found that SFXN3 could promote DNA methylation at transcription start sites (TSS) in non-M3 AML patients. These sites were found to be clustered in multiple vital cell functions and frequently accompanied by mutations in DNMT3A and NPM1. CONCLUSION In conclusion, SXFN3 plays an important role in the progression and hypermethylation in non-M3 AML patients and could be a potential biomarker for indicating a high CR rate for hypomethylating therapy.
Collapse
Affiliation(s)
- Yuxuan Dong
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Fengbo Jin
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Jing Wang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qingsheng Li
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhenqi Huang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Leiming Xia
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| | - Mingzhen Yang
- Department of Hematology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Anhui Public Health Clinical Center, Hefei, China
| |
Collapse
|
4
|
Zhang M, Zhao J, Dong H, Xue W, Xing J, Liu T, Yu X, Gu Y, Sun B, Lu H, Zhang Y. DNA Methylation-Specific Analysis of G Protein-Coupled Receptor-Related Genes in Pan-Cancer. Genes (Basel) 2022; 13:genes13071213. [PMID: 35885996 PMCID: PMC9320183 DOI: 10.3390/genes13071213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 07/05/2022] [Indexed: 11/16/2022] Open
Abstract
Tumor heterogeneity presents challenges for personalized diagnosis and treatment of cancer. The identification method of cancer-specific biomarkers has important applications for the diagnosis and treatment of cancer types. In this study, we analyzed the pan-cancer DNA methylation data from TCGA and GEO, and proposed a computational method to quantify the degree of specificity based on the level of DNA methylation of G protein-coupled receptor-related genes (GPCRs-related genes) and to identify specific GPCRs DNA methylation biomarkers (GRSDMs) in pan-cancer. Then, a ridge regression-based method was used to discover potential drugs through predicting the drug sensitivities of cancer samples. Finally, we predicted and verified 8 GRSDMs in adrenocortical carcinoma (ACC), rectum adenocarcinoma (READ), uveal Melanoma (UVM), thyroid carcinoma (THCA), and predicted 4 GRSDMs (F2RL3, DGKB, GRK5, PIK3R6) which were sensitive to 12 potential drugs. Our research provided a novel approach for the personalized diagnosis of cancer and informed individualized treatment decisions.
Collapse
Affiliation(s)
- Mengyan Zhang
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Jiyun Zhao
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Huili Dong
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Wenhui Xue
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Jie Xing
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Ting Liu
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
| | - Xiuwen Yu
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
| | - Yue Gu
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510089, China;
| | - Haibo Lu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin 150000, China
- Correspondence: (H.L.); (Y.Z.); Tel.: +86-131-2590-0189 (Y.Z.)
| | - Yan Zhang
- Computational Biology Research Center, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China; (M.Z.); (J.Z.); (H.D.); (W.X.); (J.X.); (Y.G.)
- College of pathology, Qiqihar Medical University, Qiqihar 161042, China; (T.L.); (X.Y.)
- State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou 510089, China;
- Correspondence: (H.L.); (Y.Z.); Tel.: +86-131-2590-0189 (Y.Z.)
| |
Collapse
|
5
|
Ko EA, Zhou T. GPCR genes as a predictor of glioma severity and clinical outcome. J Int Med Res 2022; 50:3000605221113911. [PMID: 35903880 PMCID: PMC9340954 DOI: 10.1177/03000605221113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To undertake a comprehensive analysis of the differential expression of the G protein-coupled receptor (GPCR) genes in order to construct a GPCR gene signature for human glioma prognosis. METHODS This current study investigated several glioma transcriptomic datasets and identified the GPCR genes potentially associated with glioma severity. RESULTS A gene signature comprising 13 GPCR genes (nine upregulated and four downregulated genes in high-grade glioma) was developed. The predictive power of the 13-gene signature was tested in two validation cohorts and a strong positive correlation (Spearman's rank correlation test: ρ = 0.649 for the Validation1 cohort; ρ = 0.693 for the Validation2 cohort) was observed between the glioma grade and 13-gene based severity score in both cohorts. The 13-gene signature was also predictive of glioma prognosis based on Kaplan-Meier survival curve analyses and Cox proportional hazard regression analysis in four cohorts of patients with glioma. CONCLUSIONS Knowledge of GPCR gene expression in glioma may help researchers gain a better understanding of the pathogenesis of high-grade glioma. Further studies are needed to validate the association between these GPCR genes and glioma pathogenesis.
Collapse
Affiliation(s)
- Eun-A Ko
- Department of Physiology, School of Medicine, Jeju National University, Jeju, Republic of Korea
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| |
Collapse
|
6
|
Hao X, Li D, Zhang D, Jia L. Microarray analysis of long non-coding RNAs related to osteogenic differentiation of human dental pulp stem cells. J Dent Sci 2021; 17:733-743. [PMID: 35756759 PMCID: PMC9201533 DOI: 10.1016/j.jds.2021.10.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/19/2021] [Indexed: 12/16/2022] Open
Abstract
Background/purpose Dental pulp stem cells (DPSCs) are candidate seed cells for bone tissue engineering, but the molecular regulation of osteogenic differentiation in DPSCs is not fully understood. Long non-coding RNAs (lncRNAs) are important regulators of gene expression, and whether they play roles in osteogenic differentiation of DPSCs requires more study. Materials and methods DPSCs were isolated and cultured. The mRNA and lncRNA expression profiles were compared through microarray assay between osteo-differentiated DPSCs and non-differentiated DPSCs. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, Gene ontology (GO) analyses, and the mRNA-lncRNA co-expression analyses were performed for functional annotation of differentially expressed RNAs. Small interfering RNA (siRNA) was used to interfere the expression of lncRNA ENST00000533992 (also named smooth muscle-induced lncRNA or SMILR), a candidate regulator, then the osteogenic differentiation potential of DPSCs was analyzed. Results DPSCs were isolated and cultured successfully. The expression of 273 mRNAs and 184 lncRNAs changed significantly in DPSCs after osteogenic induction. KEGG analyses and GO analyses showed that the differentially expressed RNAs were enriched in several pathways and biological processes. The mRNA-lncRNA co-expression network was constructed to reveal the potential relationships between mRNAs and lncRNAs. The osteogenic differentiation potential of DPSCs decreased when SMILR was interfered. Conclusion The present study provides clues for seeking for lncRNAs that participate in the regulation of osteogenic differentiation in DPSCs. LncRNA SMILR could play a role in regulating osteogenic differentiation of DPSCs.
Collapse
Affiliation(s)
- Xinyu Hao
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongfang Li
- School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Linglu Jia
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- Corresponding author. School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, No. 44-1, Wenhua Xi Road, Jinan, Shandong, 250012, People's Republic of China. Fax: +86 531 88382923.
| |
Collapse
|